植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1074-1081.DOI: 10.3724/SP.J.1258.2014.00101
所属专题: 青藏高原植物生态学:群落生态学
杨中领1,*(), 苏芳龙1, 苗原1, 钟明星1, 肖蕊2,*(
)
收稿日期:
2014-01-28
接受日期:
2014-09-07
出版日期:
2014-01-28
发布日期:
2021-04-20
通讯作者:
杨中领,肖蕊
作者简介:
xiaor1130@163.com基金资助:
YANG Zhong-Ling1,*(), SU Fang-Long1, MIAO Yuan1, ZHONG Ming-Xing1, XIAO Rui2,*(
)
Received:
2014-01-28
Accepted:
2014-09-07
Online:
2014-01-28
Published:
2021-04-20
Contact:
YANG Zhong-Ling,XIAO Rui
摘要:
在草地生态系统中, 施肥通常会导致生物多样性下降, 但是关于引起生物多样性下降的机制还存在着很大的争议。该研究基于一个4年的施肥实验, 试图通过个体大小的不整齐性和单位植物氮含量, 定性地揭示青藏高原东部高寒草甸施肥后多样性下降的原因。研究显示: 在封育地, 施肥致使个体大小不整齐性增加了15%, 并不同程度地增加了物种的高度。同时, 施肥使物种间单位植物氮含量存在显著差异的数目降低了65%。施肥后光竞争加剧, 导致大个体植物排斥小个体植物, 进而引起了物种丰富度下降29.6%。与封育地不同, 放牧地施肥并没有改变个体大小不整齐性和物种的高度, 而是使物种间单位植物氮含量存在显著差异的数目增加了11.4%。施肥并没有改变放牧地的光竞争强度, 而是增加了物种间对土壤营养元素氮的竞争强度, 进而引起了物种丰富度下降17.3%。该研究还发现, 放牧施肥地的物种丰富度下降速度和等级显著低于封育施肥地的物种丰富度下降速度和等级, 这表明放牧减缓了施肥对物种丰富度的影响力。
杨中领, 苏芳龙, 苗原, 钟明星, 肖蕊. 施肥和放牧对青藏高原高寒草甸物种丰富度的影响. 植物生态学报, 2014, 38(10): 1074-1081. DOI: 10.3724/SP.J.1258.2014.00101
YANG Zhong-Ling, SU Fang-Long, MIAO Yuan, ZHONG Ming-Xing, XIAO Rui. Effects of fertilization and grazing on species richness in an alpine meadow of Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(10): 1074-1081. DOI: 10.3724/SP.J.1258.2014.00101
图1 施肥(30 g·m-2)对放牧地(A)和封育地(B)物种丰富度的影响(平均值±标准误差)。
Fig. 1 Effects of fertilization (30 g·m-2) on species richness in both grazed plots (A) and enclosure (B) (mean ± SE).
图2 施肥(30 g·m-2)对放牧地和封育地个体大小变异系数的影响(平均值±标准误差)。 不同小写字母表示差异显著(p < 0.05)。
Fig. 2 Effects of fertilization (30 g·m-2) on coefficient of individual size variability both in grazed plots and enclosure (mean ± SE). Different lowercase letters indicate significant differences among treatments (p < 0.05).
物种 Species | 植物高度 Plant height (cm) | |||||
---|---|---|---|---|---|---|
封育 Enclosure | 封育施肥 Enclosure + fertilization | 放牧 Grazing | 放牧施肥 Grazing + fertilization | |||
青藏大戟 Euphorbia altotibetica | 10.5 | 19.9 | 6.9 | 7.8 | ||
钝裂银莲花 Anemone obtusiloba | 11.4 | 18.4 | 5.4 | 9.2 | ||
垂穗披碱草 Elymus nutans | 40.5 | 66.7 | 26.5 | 24.2 | ||
莓叶委陵菜Potentilla fragarioids | 11.0 | 12.0 | 6.6 | 6.1 | ||
阿尔泰蒲公英Taraxacum altaicum | 6.5 | 15.9 | 7.1 | 7.5 | ||
米口袋Gueldenstaedtia verna | 8.7 | 15.1 | 5.5 | 5.8 | ||
蓬子菜Galium verum | 14.1 | 25.3 | 6.6 | 9.0 | ||
四川嵩草Kobresia setchwanensis | 34.1 | 42.2 | 21.3 | 25.2 | ||
马尔康柴胡 Bupleurum malconense | 20.5 | 20.0 | 7.9 | 6.9 | ||
冷地早熟禾Poa crymophila | 33.1 | 56.3 | 16.4 | 18.1 | ||
钝苞雪莲Saussurea nigrescens | 13.6 | 14.2 | 6.4 | 7.0 | ||
高山韭Allium sikkimense | 17.5 | 27.6 | 8.9 | 14.3 | ||
菭草Koeleria cristata | 22.7 | 46.3 | 22.5 | 17.0 | ||
细叶亚菊Ajania tenuifolia | 12.7 | 20.6 | 8.2 | 5.5 | ||
草玉梅Anemone rivularis | 20.0 | 29.2 | 11.9 | 9.9 | ||
花苜蓿Medicago ruthenica | 10.1 | 19.0 | 5.5 | 6.7 | ||
椭圆叶花锚Halenia elliptica | 20.1 | 19.4 | 9.9 | 8.9 | ||
展毛翠雀花 Delphinium kamaonense | 16.0 | 25.1 | 8.0 | 8.2 | ||
丝叶毛茛 Ranunculus tanguticusvar.capillaceus | 13.2 | 23.3 | 7.4 | 8.2 | ||
乳白香青Anaphalis lactea | 8.1 | 8.6 | 3.6 | 4.8 | ||
甘肃棘豆Oxytropis kansuensis | 12.1 | 16.0 | 7.1 | 6.5 | ||
大籽蒿Artemisia sieversiana | 17.1 | 34.4 | 6.2 | 10.1 | ||
甘肃马先蒿 Pedicularis kansuensis | 15.4 | 21.8 | 7.6 | 5.9 | ||
高原毛茛Ranunculus tanguticus | 10.2 | 14.7 | 6.9 | 7.3 | ||
芒剪股颖 Agrostis trinii | 21.9 | 39.2 | 15.0 | 18.6 | ||
扁蕾Gentianopsis barbata | 19.6 | 25.4 | 15.5 | 16.9 |
表1 施肥对放牧地和封育地物种高度(2007、2008和2009年的平均值)的影响
Table 1 Effects of fertilization on species height (the mean of 2007, 2008 and 2009) both in grazed plots and enclosure
物种 Species | 植物高度 Plant height (cm) | |||||
---|---|---|---|---|---|---|
封育 Enclosure | 封育施肥 Enclosure + fertilization | 放牧 Grazing | 放牧施肥 Grazing + fertilization | |||
青藏大戟 Euphorbia altotibetica | 10.5 | 19.9 | 6.9 | 7.8 | ||
钝裂银莲花 Anemone obtusiloba | 11.4 | 18.4 | 5.4 | 9.2 | ||
垂穗披碱草 Elymus nutans | 40.5 | 66.7 | 26.5 | 24.2 | ||
莓叶委陵菜Potentilla fragarioids | 11.0 | 12.0 | 6.6 | 6.1 | ||
阿尔泰蒲公英Taraxacum altaicum | 6.5 | 15.9 | 7.1 | 7.5 | ||
米口袋Gueldenstaedtia verna | 8.7 | 15.1 | 5.5 | 5.8 | ||
蓬子菜Galium verum | 14.1 | 25.3 | 6.6 | 9.0 | ||
四川嵩草Kobresia setchwanensis | 34.1 | 42.2 | 21.3 | 25.2 | ||
马尔康柴胡 Bupleurum malconense | 20.5 | 20.0 | 7.9 | 6.9 | ||
冷地早熟禾Poa crymophila | 33.1 | 56.3 | 16.4 | 18.1 | ||
钝苞雪莲Saussurea nigrescens | 13.6 | 14.2 | 6.4 | 7.0 | ||
高山韭Allium sikkimense | 17.5 | 27.6 | 8.9 | 14.3 | ||
菭草Koeleria cristata | 22.7 | 46.3 | 22.5 | 17.0 | ||
细叶亚菊Ajania tenuifolia | 12.7 | 20.6 | 8.2 | 5.5 | ||
草玉梅Anemone rivularis | 20.0 | 29.2 | 11.9 | 9.9 | ||
花苜蓿Medicago ruthenica | 10.1 | 19.0 | 5.5 | 6.7 | ||
椭圆叶花锚Halenia elliptica | 20.1 | 19.4 | 9.9 | 8.9 | ||
展毛翠雀花 Delphinium kamaonense | 16.0 | 25.1 | 8.0 | 8.2 | ||
丝叶毛茛 Ranunculus tanguticusvar.capillaceus | 13.2 | 23.3 | 7.4 | 8.2 | ||
乳白香青Anaphalis lactea | 8.1 | 8.6 | 3.6 | 4.8 | ||
甘肃棘豆Oxytropis kansuensis | 12.1 | 16.0 | 7.1 | 6.5 | ||
大籽蒿Artemisia sieversiana | 17.1 | 34.4 | 6.2 | 10.1 | ||
甘肃马先蒿 Pedicularis kansuensis | 15.4 | 21.8 | 7.6 | 5.9 | ||
高原毛茛Ranunculus tanguticus | 10.2 | 14.7 | 6.9 | 7.3 | ||
芒剪股颖 Agrostis trinii | 21.9 | 39.2 | 15.0 | 18.6 | ||
扁蕾Gentianopsis barbata | 19.6 | 25.4 | 15.5 | 16.9 |
物种 Species | 平均植物氮含量 Mean plant nitrogen content (mg·g-1) | |||
---|---|---|---|---|
封育 Enclosure | 封育施肥 Enclosure + fertilization | 放牧 Grazing | 放牧施肥 Grazing + fertilization | |
青藏大戟 Euphorbia altotibetica | 14.7 | 15.9 | 11.7 | 14.5 |
钝裂银莲花 Anemone obtusiloba | 14.5 | 15.8 | 16.5 | 16.2 |
垂穗披碱草 Elymus nutans | 7.6 | 7.5 | 11.5 | 10.0 |
莓叶委陵菜Potentilla fragarioids | 13.3 | 13.8 | 13.0 | 15.3 |
阿尔泰蒲公英Taraxacum altaicum | 15.5 | 17.3 | 18.1 | 17.0 |
米口袋Gueldenstaedtia verna | 21.6 | 24.9 | 24.8 | 25.7 |
蓬子菜Galium verum | 14.2 | 14.8 | 15.2 | 20.0 |
四川嵩草Kobresia setchwanensis | 10.3 | 11.9 | 9.6 | 10.7 |
马尔康柴胡 Bupleurum smithii | 13.0 | 14.8 | 18.5 | 16.2 |
冷地早熟禾Poa crymophila | 7.7 | 7.1 | 6.5 | 8.2 |
钝苞雪莲 Saussurea nigrescens | 10.4 | 9.8 | 11.2 | 12.2 |
高山韭Allium sikkimense | 14.5 | 16.4 | 14.1 | 13.7 |
菭草Koeleria cristata | 9.2 | 10.6 | 10.3 | 11.6 |
细叶亚菊Ajania tenuifolia | 13.3 | 10.2 | 14.5 | 16.7 |
草玉梅Anemone rivularis | 14.3 | 17.3 | 16.9 | 15.4 |
花苜蓿Medicago ruthenica | 22.9 | 25.0 | 25.9 | 27.0 |
椭圆叶花锚Halenia elliptica | 13.1 | 13.3 | 14.7 | 14.7 |
展毛翠雀花 Delphinium kamaonense | 10.7 | 11.6 | 13.4 | 13.7 |
丝叶毛茛 Ranunculus tanguticusvar.capillaceus | 13.5 | 15.5 | 11.3 | 13.7 |
乳白香青Anaphalis lactea | 9.9 | 10.1 | 10.5 | 10.9 |
甘肃棘豆Oxytropis kansuensis | 27.1 | 28.3 | 28.8 | 29.7 |
大籽蒿Artemisia sieversiana | 12.1 | 12.4 | 12.8 | 18.7 |
甘肃马先蒿 Pedicularis kansuensis | 19.5 | 21.8 | 23.3 | 27.3 |
高原毛茛Ranunculus tanguticus | 12.8 | 13.5 | 11.9 | 12.9 |
芒剪股颖 Agrostis trinii | 9.5 | 10.4 | 12.4 | 13.7 |
扁蕾Gentianopsis barbata | 10.5 | 14.4 | 15.2 | 16.3 |
表2 施肥对封育地和放牧地组成物种单位植物氮含量(2008和2009年的平均值)的影响
Table 2 Effects of fertilization on plant nitrogen content (the mean of 2008 and 2009) of component species both in enclosure and grazed plots
物种 Species | 平均植物氮含量 Mean plant nitrogen content (mg·g-1) | |||
---|---|---|---|---|
封育 Enclosure | 封育施肥 Enclosure + fertilization | 放牧 Grazing | 放牧施肥 Grazing + fertilization | |
青藏大戟 Euphorbia altotibetica | 14.7 | 15.9 | 11.7 | 14.5 |
钝裂银莲花 Anemone obtusiloba | 14.5 | 15.8 | 16.5 | 16.2 |
垂穗披碱草 Elymus nutans | 7.6 | 7.5 | 11.5 | 10.0 |
莓叶委陵菜Potentilla fragarioids | 13.3 | 13.8 | 13.0 | 15.3 |
阿尔泰蒲公英Taraxacum altaicum | 15.5 | 17.3 | 18.1 | 17.0 |
米口袋Gueldenstaedtia verna | 21.6 | 24.9 | 24.8 | 25.7 |
蓬子菜Galium verum | 14.2 | 14.8 | 15.2 | 20.0 |
四川嵩草Kobresia setchwanensis | 10.3 | 11.9 | 9.6 | 10.7 |
马尔康柴胡 Bupleurum smithii | 13.0 | 14.8 | 18.5 | 16.2 |
冷地早熟禾Poa crymophila | 7.7 | 7.1 | 6.5 | 8.2 |
钝苞雪莲 Saussurea nigrescens | 10.4 | 9.8 | 11.2 | 12.2 |
高山韭Allium sikkimense | 14.5 | 16.4 | 14.1 | 13.7 |
菭草Koeleria cristata | 9.2 | 10.6 | 10.3 | 11.6 |
细叶亚菊Ajania tenuifolia | 13.3 | 10.2 | 14.5 | 16.7 |
草玉梅Anemone rivularis | 14.3 | 17.3 | 16.9 | 15.4 |
花苜蓿Medicago ruthenica | 22.9 | 25.0 | 25.9 | 27.0 |
椭圆叶花锚Halenia elliptica | 13.1 | 13.3 | 14.7 | 14.7 |
展毛翠雀花 Delphinium kamaonense | 10.7 | 11.6 | 13.4 | 13.7 |
丝叶毛茛 Ranunculus tanguticusvar.capillaceus | 13.5 | 15.5 | 11.3 | 13.7 |
乳白香青Anaphalis lactea | 9.9 | 10.1 | 10.5 | 10.9 |
甘肃棘豆Oxytropis kansuensis | 27.1 | 28.3 | 28.8 | 29.7 |
大籽蒿Artemisia sieversiana | 12.1 | 12.4 | 12.8 | 18.7 |
甘肃马先蒿 Pedicularis kansuensis | 19.5 | 21.8 | 23.3 | 27.3 |
高原毛茛Ranunculus tanguticus | 12.8 | 13.5 | 11.9 | 12.9 |
芒剪股颖 Agrostis trinii | 9.5 | 10.4 | 12.4 | 13.7 |
扁蕾Gentianopsis barbata | 10.5 | 14.4 | 15.2 | 16.3 |
图3 施肥对封育地和放牧地单位植物氮含量存在显著差异的物种对数目的影响。
Fig. 3 Effects of fertilization on species pairs with a significant difference in plant nitrogen content both in enclosure and grazed plots.
[1] |
Aarssen LW, Schamp BS, Pither J (2006). Why are there so many small plants? Implications for species coexistence. Journal of Ecology, 94,569-580.
DOI URL |
[2] |
Abrams PA (1995). Monotonic or unimodal diversity- productivity gradients: What does competition theory predict? Ecology, 76,2019-2027.
DOI URL |
[3] |
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486,59-67.
DOI URL |
[4] |
Dickson TL, Foster BL (2011). Fertilization decreases plant biodiversity even when light is not limiting. Ecology Letters, 14,380-388.
DOI URL |
[5] |
Gough L, Gross KL, Cleland EE, Clark CM, Collins SL, Fargione JE, Pennings SC, Suding KN (2012). Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia, 169,1053-1062.
DOI URL |
[6] | Grime JP (2002). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. Wiley, Chichester, UK. |
[7] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324,636-638.
DOI URL PMID |
[8] | Hillebrand H, Gruner DS, Borer ET, Bracken ES, Cleland EE, Elser JJ, Harpole WS, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the United States of America, 104,10904-10909. |
[9] | Lan Z, Bai Y (2012). Testing mechanisms of N-enrichment induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 367,3125-3134. |
[10] | Luo YJ, Qin GL, Du GZ (2006). Importance of assemblage- level thinning: a field experiment in an alpine meadow on the Tibet Plateau. Journal of Vegetation Science, 17,417-424. |
[11] |
Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson S, Gough L (2001). What is the observed relationship between species richness and productivity? Ecology, 82,2381-2396.
DOI URL |
[12] |
Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009). Global patterns in plant height. Journal of Ecology, 97,923-932.
DOI URL |
[13] |
Newbery DMC, Newman EI (1978). Competition between grassland plants of different initial sizes. Oecologia, 33,361-380.
DOI URL PMID |
[14] |
Newman EI (1973). Competition and diversity in herbaceous vegetation. Nature, 244,310.
DOI URL |
[15] |
Niu KC, Luo YJ, Choler P, Du GZ (2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 9,485-493.
DOI URL |
[16] |
Rajaniemi TK (2002). Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 90,316-324.
DOI URL |
[17] |
Stevens CJ, Dise NB, Mountford OJ, Gowing DJ (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303,1876-1879.
DOI URL PMID |
[18] |
Stevens MHH, Carson WP (1999a). The significance of assemblage-level thinning for species richness. Journal of Ecology, 87,490-502.
DOI URL |
[19] |
Stevens MHH, Carson WP (1999b). Plant density determines species richness along an experimental fertility gradient. Ecology, 80,455-465.
DOI URL |
[20] | Suding KN, Collings SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102,4387-4392. |
[21] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton, USA. |
[22] | Tilman D (1988). Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, USA. |
[23] | Tilman D, Pacala S (1993). The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D eds. Species Diversity in Ecological Communities. University of Chicago Press, Chicago. 13-25. |
[24] | van Ruijven J, Berendse F (2005). Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 102,695-700. |
[25] |
Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30,257-300.
DOI URL |
[26] |
Weiher E, Clarke GDP, Keddy PA (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81,309-322.
DOI URL |
[27] |
Weiner J (1985). Size hierarchies in experimental populations of annual plants. Ecology, 66,743-752.
DOI URL |
[28] |
Yang Z, Guo H, Zhang J, Du GZ (2013). Stochastic and deterministic processes together determine alpine meadow plant community composition on the Tibetan Plateau. Oecologia, 171,495-504.
DOI URL |
[29] |
Yang Z, van Ruijven J, Du GZ (2011). The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant and Soil, 345,315-324.
DOI URL |
[30] | Yang Z, Powell JR, Zhang C, Du GZ (2012). The effect of environmental and phylogenetic drivers on community assembly in an alpine meadow community. Ecology, 93,2321-2328. |
[1] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[2] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[3] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[4] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[5] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[6] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[7] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[8] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[9] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[10] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[11] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[12] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[13] | 黎松松, 王宁欣, 郑伟, 朱亚琼, 王祥, 马军, 朱进忠. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
[14] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[15] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19