植物生态学报 ›› 2008, Vol. 32 ›› Issue (2): 392-401.DOI: 10.3773/j.issn.1005-264x.2008.02.017
赵聪蛟1, 邓自发1,2, 周长芳1, 关保华1, 安树青1,*(), 陈琳1, 陆霞梅1
收稿日期:
2007-01-24
接受日期:
2007-07-05
出版日期:
2008-01-24
发布日期:
2008-03-30
通讯作者:
安树青
作者简介:
* E-mail: anshq@nju.edu.cn英文摘要部分在修改过程中得到了美国路易斯安那州立大学Irving A. Mendelssohn教授和南京大学外国语学院李长生副教授的帮助,在此一并致谢
基金资助:
ZHAO Cong-Jiao1, DENG Zi-Fa1,2, ZHOU Chang-Fang1, GUAN Bao-Hua1, AN Shu-Qing1,*(), CHEN Lin1, LU Xia-Mei1
Received:
2007-01-24
Accepted:
2007-07-05
Online:
2008-01-24
Published:
2008-03-30
Contact:
AN Shu-Qing
摘要:
互花米草 (Spartina alterniflora) 和芦苇 (Phragmites australis) 是滨海盐沼湿地的多年生草本植物,从世界范围来看,它们二者具有区域性的相互入侵特征,因此研究生境条件对两物种互侵机制的影响是一个十分有意义的生态学命题。该文运用随机区组实验设计方法,模拟海滩环境、构建人工种群、控制可变因子,研究了外来种互花米草与本地种芦苇分别单种和混种时,叶特征对不同氮水平、不同植株密度的响应。结果表明:随着氮水平的升高,互花米草和芦苇的叶面积无论是在单种还是混种情况下都显著增加 (p<0.05),但混种条件下芦苇的叶面积在高氮水平下增幅减少,这与高氮状况下互花米草与芦苇的竞争加剧有关;氮水平对单种中两种植物的叶数影响最显著 (p<0.01),对混种中互花米草的叶数和芦苇的叶宽影响最大 (p<0.05)。植株密度增加导致种内和种间竞争加剧,无论在单种还是混种处理下,都造成两种植物叶面积的显著减少 (p<0.05)。单种处理中,两物种的叶数受密度的响应最显著 (p<0.05);而混种处理中芦苇对互花米草的竞争显著减小了互花米草的叶宽和叶数(p<0.05),互花米草对芦苇的竞争则显著减小了芦苇的叶长、叶宽和叶数 (p<0.05)。两种植物的竞争结果受到氮营养的调控,低、高氮水平下互花米草的种间竞争能力大于芦苇,中氮水平下则是芦苇的种间竞争能力大于互花米草。高氮水平下互花米草通过叶面积的快速增加抑制了芦苇的叶生长,使其叶面积减少,从而在竞争中占据优势,这可能是互花米草入侵我国海滩芦苇种群的机制之一。
赵聪蛟, 邓自发, 周长芳, 关保华, 安树青, 陈琳, 陆霞梅. 氮水平和竞争对互花米草与芦苇叶特征的影响. 植物生态学报, 2008, 32(2): 392-401. DOI: 10.3773/j.issn.1005-264x.2008.02.017
ZHAO Cong-Jiao, DENG Zi-Fa, ZHOU Chang-Fang, GUAN Bao-Hua, AN Shu-Qing, CHEN Lin, LU Xia-Mei. EFFECTS OF NITROGEN AVAILABILITY AND COMPETITION ON LEAF CHARACTERISTICS OF SPARTINA ALTERNIFLORA AND PHRAGMITES AUSTRALIS. Chinese Journal of Plant Ecology, 2008, 32(2): 392-401. DOI: 10.3773/j.issn.1005-264x.2008.02.017
种植方式 Planting treatment | 物种组合 Species combination | 植株密度 Plant density in each pot | ||
---|---|---|---|---|
1株 One individual | 2株 Two individuals | 3株 Three individuals | ||
单种系列 | S+S (SS) | S+0 | S+S | S+S+S |
Monoculture | P+P (PP) | P+0 | P+P | P+P+P |
混种系列 | S+P (SP) | S+0 | S+P | S+P+P |
Mixed-culture | P+S (PS) | P+0 | P+S | P+S+S |
表1 每个氮水平下单种种群和混合种群中的物种组合与密度设计
Table 1 Species combination and density series at each nitrogen level
种植方式 Planting treatment | 物种组合 Species combination | 植株密度 Plant density in each pot | ||
---|---|---|---|---|
1株 One individual | 2株 Two individuals | 3株 Three individuals | ||
单种系列 | S+S (SS) | S+0 | S+S | S+S+S |
Monoculture | P+P (PP) | P+0 | P+P | P+P+P |
混种系列 | S+P (SP) | S+0 | S+P | S+P+P |
Mixed-culture | P+S (PS) | P+0 | P+S | P+S+S |
叶特征 Leaf characters | 变异来源 Variation source | 互花米草 S. alterniflora | 芦苇 P. australis | ||||
---|---|---|---|---|---|---|---|
F | p | F | p | ||||
叶长 | D | 1.831 4 | 0.176 1 | 10.657 6 | 0.000 3** | ||
Leaf length | N | 11.898 4 | 0.000 1** | 22.768 6 | 0.000 0** | ||
D × N | 1.287 1 | 0.295 0 | 0.965 6 | 0.439 3 | |||
叶宽 | D | 10.615 5 | 0.000 3** | 11.321 4 | 0.000 2** | ||
Leaf width | N | 24.700 2 | 0.000 0** | 18.568 5 | 0.000 0** | ||
D × N | 1.454 3 | 0.238 4 | 2.105 1 | 0.102 4 | |||
叶片厚度 | D | 2.305 2 | 0.115 6 | 0.624 8 | 0.541 6 | ||
Leaf thickness | N | 0.019 7 | 0.980 5 | 3.561 3 | 0.039 8* | ||
D × N | 2.211 2 | 0.089 2 | 0.952 6 | 0.446 3 | |||
叶数 | D | 39.405 2 | 0.000 0** | 7.307 5 | 0.002 4** | ||
Leaf number | N | 56.688 5 | 0.000 0** | 4.321 8 | 0.021 5* | ||
D × N | 3.132 6 | 0.027 4* | 0.859 3 | 0.498 4 | |||
叶面积 | D | 152.858 6 | 0.000 0** | 77.101 2 | 0.000 0** | ||
Leaf area | N | 142.586 1 | 0.000 0** | 38.637 7 | 0.000 0** | ||
D × N | 8.408 8 | 0.000 0** | 3.634 6 | 0.014 0* |
表2 互花米草、芦苇单种种群叶特征二维方差分析
Table 2 Results of Two-way ANOVA of leaf characters for Spartina alterniflora and Phragmites australis in monoculture
叶特征 Leaf characters | 变异来源 Variation source | 互花米草 S. alterniflora | 芦苇 P. australis | ||||
---|---|---|---|---|---|---|---|
F | p | F | p | ||||
叶长 | D | 1.831 4 | 0.176 1 | 10.657 6 | 0.000 3** | ||
Leaf length | N | 11.898 4 | 0.000 1** | 22.768 6 | 0.000 0** | ||
D × N | 1.287 1 | 0.295 0 | 0.965 6 | 0.439 3 | |||
叶宽 | D | 10.615 5 | 0.000 3** | 11.321 4 | 0.000 2** | ||
Leaf width | N | 24.700 2 | 0.000 0** | 18.568 5 | 0.000 0** | ||
D × N | 1.454 3 | 0.238 4 | 2.105 1 | 0.102 4 | |||
叶片厚度 | D | 2.305 2 | 0.115 6 | 0.624 8 | 0.541 6 | ||
Leaf thickness | N | 0.019 7 | 0.980 5 | 3.561 3 | 0.039 8* | ||
D × N | 2.211 2 | 0.089 2 | 0.952 6 | 0.446 3 | |||
叶数 | D | 39.405 2 | 0.000 0** | 7.307 5 | 0.002 4** | ||
Leaf number | N | 56.688 5 | 0.000 0** | 4.321 8 | 0.021 5* | ||
D × N | 3.132 6 | 0.027 4* | 0.859 3 | 0.498 4 | |||
叶面积 | D | 152.858 6 | 0.000 0** | 77.101 2 | 0.000 0** | ||
Leaf area | N | 142.586 1 | 0.000 0** | 38.637 7 | 0.000 0** | ||
D × N | 8.408 8 | 0.000 0** | 3.634 6 | 0.014 0* |
图1 互花米草 (a)、芦苇 (b) 单种种群中单株植物的叶面积变化 N0、N1、N2: 低、中、高3个氮水平N0 (0 mg·kg-1), N1 (60 mg·kg-1), N2 (120 mg·kg-1) three nitrogen levels S、SS、SSS: 不同密度的互花米草Different density series of S. alterniflora P、PP、PPP: 不同密度的芦苇Different density series of P. australis 1个字母代表1株植物 Each letter corresponds to 1 individual plant of that species e, f, g: 表示相同氮水平的不同植株密度之间差异显著 (p<0.05) Indicating significantly density effect differences at the same nitrogen level (p<0.05) E, F, G: 表示相同植株密度的不同氮水平之间差异显著 (p<0.05) Indicating significant nitrogen effect differences in the same density (p<0.05)
Fig.1 Leaf area changes of individual plant of Spartina alterniflora (a) and Phragmites australis (b) in monoculture
图2 互花米草单种种群中单株植物的叶长 (a)、叶宽 (b) 与叶数 (c) 的变化 图注同图1
Fig. 2 Changes of leaf length (a), leaf width (b) and leaf number (c) of individual Spartina alterniflora in monoculture Notes see Fig. 1
图3 芦苇单种种群中单株植物的叶长 (a)、叶宽 (b)、叶片厚度 (c) 与叶数 (d) 的变化 图注同图1
Fig. 3 Changes of leaf length (a), leaf width (b), leaf thickness (c) and leaf number (d) of individual Phragmites australis in monoculture Notes see Fig. 1
叶特征 Leaf characters | 变异来源 Variation source | 互花米草 S. alterniflora | 芦苇 P. australis | ||||
---|---|---|---|---|---|---|---|
F | p | F | p | ||||
叶长 | MT | 0.743 9 | 0.489 3 | 9.669 1 | 0.001 4** | ||
Leaf length | N | 1.494 5 | 0.250 9 | 10.241 5 | 0.001 1** | ||
MT × N | 0.400 6 | 0.805 6 | 1.662 6 | 0.202 3 | |||
叶宽 | MT | 6.822 2 | 0.006 2** | 16.083 3 | 0.000 1** | ||
Leaf width | N | 7.755 6 | 0.003 7** | 9.255 2 | 0.001 7** | ||
MT × N | 1.444 4 | 0.260 2 | 0.645 8 | 0.636 9 | |||
叶片厚度 | MT | 1.496 4 | 0.250 5 | 1.704 1 | 0.210 0 | ||
Leaf thickness | N | 0.899 1 | 0.424 4 | 0.216 9 | 0.807 1 | ||
MT × N | 0.424 4 | 0.789 0 | 1.197 4 | 0.345 9 | |||
叶数 | MT | 1.888 4 | 0.180 1 | 3.787 3 | 0.042 4* | ||
Leaf number | N | 9.654 7 | 0.001 4** | 5.190 6 | 0.016 6* | ||
MT × N | 1.460 2 | 0.255 5 | 0.711 3 | 0.594 8 | |||
叶面积 | MT | 77.436 4 | 0.000 0** | 54.776 8 | 0.000 0** | ||
Leaf area | N | 102.774 8 | 0.000 0** | 28.698 9 | 0.000 0** | ||
MT × N | 21.881 2 | 0.000 0** | 5.848 0 | 0.014 0* |
表3 互花米草、芦苇混合种群叶特征二维方差分析
Table 3 Results of Two-way ANOVA of leaf characters for Spartina alterniflora and Phragmites australis in mixed-culture
叶特征 Leaf characters | 变异来源 Variation source | 互花米草 S. alterniflora | 芦苇 P. australis | ||||
---|---|---|---|---|---|---|---|
F | p | F | p | ||||
叶长 | MT | 0.743 9 | 0.489 3 | 9.669 1 | 0.001 4** | ||
Leaf length | N | 1.494 5 | 0.250 9 | 10.241 5 | 0.001 1** | ||
MT × N | 0.400 6 | 0.805 6 | 1.662 6 | 0.202 3 | |||
叶宽 | MT | 6.822 2 | 0.006 2** | 16.083 3 | 0.000 1** | ||
Leaf width | N | 7.755 6 | 0.003 7** | 9.255 2 | 0.001 7** | ||
MT × N | 1.444 4 | 0.260 2 | 0.645 8 | 0.636 9 | |||
叶片厚度 | MT | 1.496 4 | 0.250 5 | 1.704 1 | 0.210 0 | ||
Leaf thickness | N | 0.899 1 | 0.424 4 | 0.216 9 | 0.807 1 | ||
MT × N | 0.424 4 | 0.789 0 | 1.197 4 | 0.345 9 | |||
叶数 | MT | 1.888 4 | 0.180 1 | 3.787 3 | 0.042 4* | ||
Leaf number | N | 9.654 7 | 0.001 4** | 5.190 6 | 0.016 6* | ||
MT × N | 1.460 2 | 0.255 5 | 0.711 3 | 0.594 8 | |||
叶面积 | MT | 77.436 4 | 0.000 0** | 54.776 8 | 0.000 0** | ||
Leaf area | N | 102.774 8 | 0.000 0** | 28.698 9 | 0.000 0** | ||
MT × N | 21.881 2 | 0.000 0** | 5.848 0 | 0.014 0* |
图4 互花米草与芦苇混合种群中单株植物的叶面积变化 (a) 随芦苇密度的增加互花米草的单株叶面积变化Leaf area changes of individual S. alterniflora under different density series of P. australis (b) 随互花米草密度的增加芦苇的单株叶面积变化Leaf area changes of individual P. australis under different density series of S. alterniflora S, P, SP or PS, SPP, PSS:不同的混种方式Different mixed-culture treatments of S. alterniflora (S) and P. australis (P) 1个字母代表1株植物Each letter corresponds to 1 individual plant of that species e, f, g, E, F, G, N0, N1, N2:见图1 See Fig. 1 SP, PS: 见表1 See Table 1
Fig. 4 Leaf area changes of individual plant of Spartina alterniflora and Phragmites australis in mixed-culture
图5 混合种群中单株互花米草在不同密度芦苇影响下叶宽 (a) 与叶数 (b) 的变化 图注同图4
Fig. 5 Changes of leaf width (a) and leaf number (b) of individual Spartina alterniflora under different density series of Phragmites australis Notes see Fig. 4
图6 混合种群中单株芦苇在不同密度互花米草影响下叶长 (a)、叶宽 (b) 与叶数 (c) 的变化 图注同图4
Fig. 6 Changes of leaf length (a), leaf width (b) and leaf number (c) of individual Phragmites australis under different density series of Spartina alterniflora Notes see Fig. 4
[1] | An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007). Spartina invasion in China: implications for invasive species management and future research. Weed Research, 47, 183-191. |
[2] | Bastlová D, Cízková H, Bastl M, Květ J (2004). Growth of Lythrum salicaria and Phragmites australis plants originating from a wide geographical area: response to nutrient and water supply. Global Ecology and Biogeography, 13, 259-271. |
[3] | Callaway JC, Josselyn MN (1992). The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries, 15, 218-226. |
[4] | Chambers RM, Mozdzer TJ, Ambrose JC (1998). Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany, 62, 161-169. |
[5] | Chen HL, Li B, Fang CM, Chen JK, Wu JH (2007). Exotic plant influences soil nematode communities through litter input. Soil Biology & Biochemistry, 39, 1782-1793. |
[6] | Chen ZY (陈中义), Gao H (高慧), Wu H (吴涵), Li B (李博) (2005). Effects of simulated canopy shade on seed germination and seedlings growth of Spartina alterniflora and Scirpus mariqueter. Hubei Agricultural Sciences (湖北农业科学), (2), 82-84. (in Chinese with English abstract) |
[7] | Chen YN (陈一宁), Gao S (高抒), Jia JJ (贾建军), Wang AJ (王爱军) (2005). Tidal flat ecological changes by transplanting Spartina anglica and Spartina alterniflora, northern Jiangsu coast. Oceanologia et Limnologia Sinica (海洋与湖泊), 36, 394-403. (in Chinese with English abstract) |
[8] | Cox EF (1972). A photoelectric digital scanner for measuring leaf area. New Phytologist, 71, 819-823. |
[9] | Dai T, Wiegert RG (1997). A field study of photosynthetic capacity and its response to nitrogen fertilization in Spartina alterniflora. Estuarine, Coastal and Shelf Science, 45, 273-283. |
[10] | Deng ZF (邓自发), An SQ (安树青), Zhi YB (智颖飙), Zhou CF (周长芳), Chen L (陈琳), Zhao CJ (赵聪蛟), Fang SB (方淑波), Li HL (李红丽) (2006). Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel. Acta Ecologica Sinica (生态学报), 26, 2678-2686. (in Chinese with English abstract) |
[11] | Duan XN (段晓男), Wang XK (王效科), Ouyang ZY (欧阳志云), Miao H (苗鸿), Guo R (郭然) (2004). The biomass of Phragmites australis and its influencing factors in Wuliangsuhai. Acta Phytoecologica Sinica (植物生态学报), 28, 246-251. (in Chinese with English abstract) |
[12] | Emery NC, Ewanchuk PJ, Bertness MD (2001). Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology, 82, 2471-2485. |
[13] | Esselink P, Zijlstra W, Dijkema KS, van Diggenlen R (2000). The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea. Biological Conservation, 93, 61-76. |
[14] | Folgi S, Marchesini R, Gerdol R (2002). Reed (Phragmites australis) decline in a brackish wetland in Italy. Marine Environment Research, 53, 465-479. |
[15] | He WS, Feagin R, Lu JJ, Liu WL, Yan Q, Xie ZF (2007). Impacts of introduced Spartina alterniflora along an elevation gradient at the Jiuduansha Shoals in the Yangtze Estuary, suburban Shanghai, China. Ecological Engineering, 29, 245-248. |
[16] | Knight DH (1973). Leaf area dynamics of a shortgrass Prairie in Colorado. Ecology, 54, 891-896. |
[17] | Levine JM, Brewer JS, Bertness MD (1998). Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology, 86, 285-292. |
[18] | Li BG (李宝光), Tao XH (陶秀花), Ni GP (倪国平), Huang DH (黄冬华), Song XM (宋小民) (2006). Study on determining plant leaf area by scanning image pixels method. Acta Agriculturae Jiangxi (江西农业学报), 18(3), 78-81. (in Chinese with English abstract) |
[19] | Liang X (梁霞), Zhang LQ (张利权), Zhao GQ (赵广琦) (2006). A comparison of photosynthetic characteristics between Spartina alterniflora and Phragmites australis under different CO2 concentrations. Acta Ecologica Sinica (生态学报), 26, 842-848. (in Chinese with English abstract) |
[20] | Liu JW (刘金文), Sha W (沙伟) (2004). Origin, expansion and decline of Phragmites australis. Guizhou Science (贵州科学), 22(2), 65-68, 82. (in Chinese with English abstract) |
[21] | Marks M, Lapin B, Randall J (1994). Phragmites australis (P. communis): threats, management, and monitoring. Natural Areas Journal, 14, 285-294. |
[22] | Marshll JD, Waring RH (1986). Comparison of methods of estimating leaf-area index in old-growth Douglas-fir. Ecology, 67, 975-979. |
[23] | Minchinton TE (2002). Disturbance by wrack facilitates spread of Phragmites australis in a coastal marsh. Journal of Experimental Marine Biology and Ecology, 281, 89-107. |
[24] | Ostendorp W (1989). 'Die-back' of reeds in Europe—a critical review of literature. Aquatic Botany, 35, 5-26. |
[25] | Perry LG, Galatowitsch SM (2006). Light competition for invasive species control: a model of cover crop—weed competition and implications for Phalaris arundinacea control in sedge meadow wetlands. Euphytica, 148, 121-134. |
[26] | Pezeshki SR, DeLaune RD, Lindau CW (1988). Interaction among sediment anaerobiosis, nitrogen uptake and photosynthesis of Spartina alterniflora. Physiologia Plantarum, 74, 561-565. |
[27] | Philipp KR, Field RT (2005). Phragmites australis expansion in Delaware Bay salt marshes. Ecological Engineering, 25, 275-291. |
[28] | Poulin B, Lefebvre G, Mauchamp A (2002). Habitat requirements of passerines and reedbed management in Southern France. Biological Conservation, 107, 315-325. |
[29] | Qin WH (秦卫华), Wang Z (王智), Jiang MK (蒋明康) (2004). Invasion of Spartina alterniflora Loisel to two wetland nature reserve in Changjiang Estuary. Weed Science (杂草科学), (4), 15-16. (in Chinese) |
[30] | Rice D, Rooth J, Stevenson JC (2000). Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands, 20, 280-299. |
[31] | Rickey MA, Anderson RC (2004). Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. Journal of Applied Ecology, 41, 888-896. |
[32] | Seliskar DM, Gallagher JL, Burdick DM, Mutz LA (2002). The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. Journal of Ecology, 90, 1-11. |
[33] | Tang CJ (唐承佳), Lu JJ (陆健健) (2003). Studies on plant community on the Jiuduansha Shoal at the Yangtze Estuary. Acta Ecologica Sinica (生态学报), 23, 399-403. (in Chinese with English abstract) |
[34] | Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG (2006). Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. American Journal of Botany, 93, 1784-1790. |
[35] | Wang Q (王卿), An SQ (安树青), Ma ZJ (马志军), Zhao B (赵斌), Chen JK (陈家宽), Li B (李博) (2006). Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 44, 559-588. (in Chinese with English abstract) |
[36] | Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B (2006). Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biological Invasion, 8, 1547-1560. |
[37] | Weis JS, Weis P (2003). Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Marine Pollution Bulletin, 46, 816-820. |
[38] | Xiao Q (肖强), Ye WJ (叶文景), Zhu Z (朱珠), Chen Y (陈瑶), Zheng HL (郑海雷) (2005). A simple non-destructive method to measure leaf area using digital camera and Photoshop software. Chinese Journal of Ecology (生态学杂志), 24, 711-714. (in Chinese with English abstract) |
[39] | Yuan ZM (袁哲明), Fu LC (傅凌才) (1997). Scanner measurement of insect-damaged leaf area. Journal of Hunan Agricultural University (湖南农业大学学报), 23, 472-473. (in Chinese with English abstract) |
[40] | Zhao GQ (赵广琦), Zhang LQ (张利权), Liang X (梁霞) (2005). A comparison of photosynthetic characteristics between an invasive plant Spartina alterniflora and an indigenous plant Phragmites australis. Acta Ecologica Sinica (生态学报), 25, 1604-1611. (in Chinese with English abstract) |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[3] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[4] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[5] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[6] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[7] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[8] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[9] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[10] | 康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195-1202. |
[11] | 郭瑞, 周际, 刘琪, 顾峰雪. 松嫩退化草地芦苇不同叶位叶片营养元素代谢特征[J]. 植物生态学报, 2018, 42(7): 734-740. |
[12] | 孙慧敏, 姜姜, 崔莉娜, 张水锋, 张金池. 互花米草入侵对漳江口红树林湿地土壤有机碳官能团特征的影响[J]. 植物生态学报, 2018, 42(7): 774-784. |
[13] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[14] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[15] | 陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制[J]. 植物生态学报, 2017, 41(4): 409-417. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19