植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 1104-1115.DOI: 10.3773/j.issn.1005-264x.2008.05.015
收稿日期:
2007-09-10
接受日期:
2008-04-25
出版日期:
2008-09-10
发布日期:
2008-09-30
通讯作者:
丁圣彦
作者简介:
*(syding@henu.edu.cn)基金资助:
HU Nan1,2, FAN Yu-Long1, DING Sheng-Yan1,*(), LU Xun-Ling1
Received:
2007-09-10
Accepted:
2008-04-25
Online:
2008-09-10
Published:
2008-09-30
Contact:
DING Sheng-Yan
摘要:
乔木层优势种左右着森林生态系统的结构与功能, 以乔木层优势种为主体划分森林生态系统功能型, 可以对森林生态系统的功能、框架结构及类群分布有一个明确的认识。伏牛山国家级自然保护区是中国东部森林样带中的亚热带和暖温带的结合点, 具有南北气候过渡带的典型特征, 群落的优势种突出, 随着环境梯度(海拔)的变化, 乔木层优势种变化明显, 能较好地反映出植被与环境的动态关系。采用群落生态学的调查方法, 在伏牛山南北坡设置66个样地。根据调查结果, 通过计算重要值, 选取37个优势度相对较大的乔木树种进行种间联结及相关性分析, 以χ2检验为基础, 结合联结系数AC和共同出现百分率PC来测定乔木优势种间的联结性, 根据优势种间的联结性及其在海拔梯度上的变化异同来划分植物功能群。结果表明, 栓皮栎(Quercus variabilis)、短柄枹(Q. glandulifera)、锐齿栎(Q. acutidentata)、华山松(Pinus armandi)依海拔升高分别具有最大的优势势性。以这4个优势种为主体将伏牛山自然保护区乔木层划分为4个植物功能型, 第一组功能型为: 栓皮栎、槲栎(Q. aliena)、山槐(Albizia kalkora)、茅栗(Castanea seguinii)(1 100 m以下); 第二组功能型为: 短柄枹、化香(Platycarya strobilacea)、黄连木(Pistacia chinensis)(1 100~1 400 m); 第三组功能型为: 锐齿栎、千金榆(Carpinus cordata)、漆树(Toxicodendron verniciflum)(1 400~1 800 m); 第四组功能型为: 华山松、油松(Pinus tabulaeformis)、六道木(Abelia biflora)、白桦(Betula platyphylla)、红桦(B. albo-sinensis)(1 800 m以上)。功能群间的形态特征有明显的区别, 如叶片的大小、形状等, 这些区别需要生理生态学的进一步研究。
胡楠, 范玉龙, 丁圣彦, 卢训令. 伏牛山自然保护区森林生态系统乔木植物功能型分类. 植物生态学报, 2008, 32(5): 1104-1115. DOI: 10.3773/j.issn.1005-264x.2008.05.015
HU Nan, FAN Yu-Long, DING Sheng-Yan, LU Xun-Ling. CLASSIFICATION OF PLANT FUNCTIONAL TYPES BASED ON DOMINANT TREE SPECIES IN THE FOREST ECOSYSTEM AT FUNIU MOUNTAIN NATIONAL RESERVE, EAST CHINA. Chinese Journal of Plant Ecology, 2008, 32(5): 1104-1115. DOI: 10.3773/j.issn.1005-264x.2008.05.015
位置 Location | 气候 Climate | 植被 Vegetation | |||||||
---|---|---|---|---|---|---|---|---|---|
110°30′~113°05′ E 32°45′~34°00′ N ≈10 000 km2 | 降水 (mm) Precipitation | 平均温度 (℃) Average temperature | 海拔(m) Altitude | 暖温带落叶阔叶林向亚热带常绿阔叶林的过渡型 Transitional types from temperate deciduous broad-leaved forest to the subtropical evergreen broad-leaved forest | |||||
800~1 100 mm | 年均 Average | 最高 Max. | 最低 Min. | 600~2 000 | |||||
南坡 South slope | 北坡 North slope | 南坡 South slope | 北坡 North slope | 南坡 South slope | 北坡 North slope | ||||
14.1~ 15.1 | 12.1~ 12.7 | 26.5~ 28.5 | 1~ 2 | -1.5~ -2 |
表1 研究区自然地理概况
Table 1 Climate and geographical conditions in the experimental site
位置 Location | 气候 Climate | 植被 Vegetation | |||||||
---|---|---|---|---|---|---|---|---|---|
110°30′~113°05′ E 32°45′~34°00′ N ≈10 000 km2 | 降水 (mm) Precipitation | 平均温度 (℃) Average temperature | 海拔(m) Altitude | 暖温带落叶阔叶林向亚热带常绿阔叶林的过渡型 Transitional types from temperate deciduous broad-leaved forest to the subtropical evergreen broad-leaved forest | |||||
800~1 100 mm | 年均 Average | 最高 Max. | 最低 Min. | 600~2 000 | |||||
南坡 South slope | 北坡 North slope | 南坡 South slope | 北坡 North slope | 南坡 South slope | 北坡 North slope | ||||
14.1~ 15.1 | 12.1~ 12.7 | 26.5~ 28.5 | 1~ 2 | -1.5~ -2 |
种号 No. of species | 种名 Name of species | 重要值 Important value | 种号 No. of species | 种名 Name of species | 重要值 Important value | |
---|---|---|---|---|---|---|
1 | 栓皮栎 Quercus variabilis | 0.46 | 20 | 漆树 Toxicodendron vernicifluum | 0.05 | |
2 | 短柄枹 Q. glandulifera | 0.35 | 21 | 黄檩 Dalbergia hupeana | 0.01 | |
3 | 锐齿栎 Q. acutidentata | 0.63 | 22 | 青榨槭 Acer davidii | 0.06 | |
4 | 华山松 Pinus armandi | 0.20 | 23 | 山楂 Crataegus pinnatifida | 0.02 | |
5 | 槲栎 Q. aliena | 0.09 | 24 | 华榛 Corylus chinensis | 0.02 | |
6 | 化香 Platycarya strobilacea | 0.10 | 25 | 麻栎 Quercus acutissima | 0.01 | |
7 | 千金榆 Carpinus cordata | 0.12 | 26 | 六道木 Abelia biflora | 0.01 | |
8 | 山槐 Aldizia kalkora | 0.04 | 27 | 合欢 Albizia julibrissin | 0.01 | |
9 | 椴树 Tilia chinensis | 0.10 | 28 | 白蜡 Fraxinus chinensis | 0.01 | |
10 | 黄连木 Pistacia chinensis | 0.03 | 29 | 白桦 Betula platyphylla | 0.01 | |
11 | 茅栗 Castanea seguinii | 0.03 | 30 | 华北落叶松 Larix principis-rupprechtii | 0.01 | |
12 | 三桠乌药 Lindera obtusiloba | 0.06 | 31 | 红桦 B. albo-sinensis | 0.01 | |
13 | 鹅耳枥 Carpinus turczaninowii | 0.06 | 32 | 五角枫 Acer mono | 0.01 | |
14 | 盐肤木 Rhus chinensis | 0.02 | 33 | 拐枣 Hovenia dulcis | 0.01 | |
15 | 山樱桃 Prunus tomentosa | 0.04 | 34 | 四照花 Dendrobenthamia japonica | 0.01 | |
16 | 苦楝 Elia azedarach | 0.01 | 35 | 岩栎 Q. acrodenta | 0.01 | |
17 | 黄栌 Cotinus coggyria | 0.01 | 36 | 暖木 Elios aveitchioru | 0.01 | |
18 | 山橿 Lindera reflexa | 0.01 | 37 | 山杨 Populus davidiana | 0.01 | |
19 | 油松 P. tabulaeformis | 0.06 |
表2 研究区乔木层优势种与编号
Table 2 The name and number of arbor layer dominant species at the experimental site
种号 No. of species | 种名 Name of species | 重要值 Important value | 种号 No. of species | 种名 Name of species | 重要值 Important value | |
---|---|---|---|---|---|---|
1 | 栓皮栎 Quercus variabilis | 0.46 | 20 | 漆树 Toxicodendron vernicifluum | 0.05 | |
2 | 短柄枹 Q. glandulifera | 0.35 | 21 | 黄檩 Dalbergia hupeana | 0.01 | |
3 | 锐齿栎 Q. acutidentata | 0.63 | 22 | 青榨槭 Acer davidii | 0.06 | |
4 | 华山松 Pinus armandi | 0.20 | 23 | 山楂 Crataegus pinnatifida | 0.02 | |
5 | 槲栎 Q. aliena | 0.09 | 24 | 华榛 Corylus chinensis | 0.02 | |
6 | 化香 Platycarya strobilacea | 0.10 | 25 | 麻栎 Quercus acutissima | 0.01 | |
7 | 千金榆 Carpinus cordata | 0.12 | 26 | 六道木 Abelia biflora | 0.01 | |
8 | 山槐 Aldizia kalkora | 0.04 | 27 | 合欢 Albizia julibrissin | 0.01 | |
9 | 椴树 Tilia chinensis | 0.10 | 28 | 白蜡 Fraxinus chinensis | 0.01 | |
10 | 黄连木 Pistacia chinensis | 0.03 | 29 | 白桦 Betula platyphylla | 0.01 | |
11 | 茅栗 Castanea seguinii | 0.03 | 30 | 华北落叶松 Larix principis-rupprechtii | 0.01 | |
12 | 三桠乌药 Lindera obtusiloba | 0.06 | 31 | 红桦 B. albo-sinensis | 0.01 | |
13 | 鹅耳枥 Carpinus turczaninowii | 0.06 | 32 | 五角枫 Acer mono | 0.01 | |
14 | 盐肤木 Rhus chinensis | 0.02 | 33 | 拐枣 Hovenia dulcis | 0.01 | |
15 | 山樱桃 Prunus tomentosa | 0.04 | 34 | 四照花 Dendrobenthamia japonica | 0.01 | |
16 | 苦楝 Elia azedarach | 0.01 | 35 | 岩栎 Q. acrodenta | 0.01 | |
17 | 黄栌 Cotinus coggyria | 0.01 | 36 | 暖木 Elios aveitchioru | 0.01 | |
18 | 山橿 Lindera reflexa | 0.01 | 37 | 山杨 Populus davidiana | 0.01 | |
19 | 油松 P. tabulaeformis | 0.06 |
图1 乔木层优势种种间联结分析χ2值半矩阵图 物种名及顺序同表2 The name and number of species refer to Table 2
Fig. 1 The semi-matrix graph of χ2value of interspecific associations of dominant tree species
图2 乔木层优势种种间联结分析AC值半矩阵图 物种名及顺序同表2 The name and number of species refer to Table 2
Fig. 2 The semi-matrix graph of AC value of interspecific associations of dominant tree species
图3 乔木层优势种种间联结分析PC值半矩阵图 物种名及顺序同表2 The name and number of species refer to Table 2
Fig. 3 The semi-matrix graph of PC value of interspecific associations of dominant tree species
[1] | Aguiar MR, Paruelo JM, Sala OE, Lauenroth UK (1996). Ecosystem responses to changes in plant functional type composition: an example from the Patagonian steppe. Journal of Vegetation Science, 7,381-390. |
[2] | Box EO (1995). Factors determining distributions of tree species and plant functional types. Vegetatio, 121,101-116. |
[3] | Box EO (1996). Plant functional types and climate at the global scale. Journal of Vegetation Science, 7,309-320. |
[4] | Bugmann H (1996). Functional types of trees in temperate and boreal forests: classification and testing. Journal of Vegetation Science, 7,359-370. |
[5] | Castro-Diez P, Villar-Savador P, Perez-Rontome C, Maestro-Martinez M, Montserrat-Marti G (1997). Leaf morphology and leaf chamical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees, 11,127-134. |
[6] | Descolas-Gros C, Schölzel C (2007). Stable isotope ratios of carbon and nitrogen in pollen grains in order to characterize plant functional groups and photosynthetic pathway types. New Phytologist, 176,390-401. |
[7] | Díaz Barradas MC, Zunzunegui M, Tirado R, Ain-Lhout F, Garcia Novo F (1999). Plant functional types and ecosystem function in a Mediterranean shrubland. Journal of Vegetation Science, 10,709-716. |
[8] | Lauenroth WK, Coffin DP, Burke IC, Virginia RA (1997). Interactions between demographic and ecosystem processes in a semi-arid and an arid grassland:a challenge for plant functional types. In: Smith TM, Shugart HH, Woodward FI eds. Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, Cambridge, 234-254. |
[9] | Lin H (林华), Cao M (曹敏) (2006). Thermodynamic processes in the development of forest ecosystems and plant populations. Acta Ecologica Sinica (生态学报), 26,4250-4256. (in Chinese with English abstract) |
[10] | Liu JF (刘金福), Hong W (洪伟) (1999). A study on the community ecology of Castanopsis kawakamii—study on the niche of the main tree population inCastanopsis kawakamii community. Acta Ecologica Sinica (生态学报), 19,347-352. (in Chinese with English abstract) |
[11] | Liu ZW (刘增文) (2006). Nutritional principle of forest ecosystem stability. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition) (西北农林科技大学学报(自然科学版)), 34,129-134. (in Chinese with English abstract) |
[12] | Ma JM (马姜明), Li K (李昆) (2004). Current situation of research and prospects on forest ecosystem stability. World Forestry Research (世界林业研究), 2(1),15-19. (in Chinese with English abstract) |
[13] |
Mouillot D, Mason NW, Wilson JB (2007). Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia, 152,729-737.
DOI URL PMID |
[14] | Mueller-Dombois D, Ellenbeng H (Translated by Bao XC (鲍显诚), Zhang S (张绅), Yang BS (杨邦顺), Jin ZZ (金振洲), Tang TG (唐迁贵), Yao BJ (姚宝君), Jiang HQ (姜汉侨)) (1986). Goal and Measures of Vegetation Ecology (in English). Science Press, Beijing, 26-87. (in Chinese) |
[15] | Ni J (倪健) (2001). Plant functional types and biomes of China at a regional scale. Acta Botanica Sinica (植物学报), 43,419-425. (in Chinese with English abstract) |
[16] | Noble IR, Gitay H (1996). Functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science, 7,329-336. |
[17] |
Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitchong RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301,183-186.
URL PMID |
[18] | Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992). Global biome model: predicting global vegetation patterns from plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19,117-134. |
[19] | Qian LW (钱莲文), Wu CZ (吴承祯), Hong W (洪伟) (2005). The niche of the dominant species in the regeneration layer of Tsuga longibracteata forest gaps and non-gaps. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) (福建农林大学学报(自然科学版)), 34,330-333. (in Chinese with English abstract) |
[20] | Shang FD (尚富德), Wang PJ (王磐基), Feng GP (冯广平), Zeng Y (曾颖), Wang ZD (王正德) (1998). Study on the characteristics and causes of formation of plant diversity in the Funiushan transition region. Journal of Henan University (Natural Science Edition) (河南大学学报(自然科学版)), 28(1),54-60. (in Chinese with English abstract) |
[21] | Shang YC (尚玉昌) (1998). The theory of niche in the contemporary ecology. Progress of Ecology (生态学进展), 5(2),77-78. (in Chinese with English abstract) |
[22] | Shao GF, Shugart HH, Hayden BP (1996). Functional classification of coastal barrier island vegetation. Journal of Vegetation Science, 7,391-396. |
[23] | Shugart HH (1997). Plant and ecosystem functional types. In: Smith TM, Shugart HH, Woodward FI eds. Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, Cambridge, 20-43. |
[24] | Smith TM, Woodward FI, Shugart HH (1996). Plant Functional Types. Cambridge University Press,Cambridge. |
[25] | Smith TM, Shugart HH, Woodward FI, Burton PJ (1993). Plant functional types. In: Solomon AM, Shugart HH eds. Vegetation Dynamics and Global Change. Chapman and Hall, London, 272-292. |
[26] | Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996). A functional analysis of a limestone grassland community. Journal of Vegetation Science, 7,371-380. |
[27] | Walker BH (1997). Functional types in no equilibrium systems. In: Smith TM, Shugart HH, Woodward FI eds. Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, Cambridge, 255-270. |
[28] | Wang BS (王伯荪), Peng SL (彭少麟) (1985). Studies on the measuring techniques of interspecific association of lower-subtropical evergreen-broadleaved forests. Ⅰ. The exploration and the revision on the measuring formulas of interspecific association. Acta Phytoecoiogica et Geobotanica Sinica (植物生态学与地植物学丛刊), 9,274-279. (in Chinese with English abstract) |
[29] | Wang G (王刚), Zhao SL (赵松岭), Zhang PY (张鹏云) (1984). On the definition of niche and the improved formula for measuring niche overlap. Acta Ecologica Sinica (生态学报), 4,119-127. (in Chinese with English abstract) |
[30] | Wang GH (王国宏) (2002). Further thoughts on diversity and stability in ecosystems. Biodiversity Science(生物多样性), 10,126-134. (in Chinese with English abstract) |
[31] | Woodward FI, Cramer W (1996). Plant functional types and climatic changes: introduction. Journal of Vegetation Science, 7,306-308. |
[32] | Xu WH (徐卫华), Ouyang ZY (欧阳志云), Huang H (黄璜), Wang XK (王效科), Miao H (苗鸿), Zheng H (郑华) (2006). Priority analysis on conserving China’s terrestrial ecosystems. Acta Ecologica Sinica (生态学报), 26,271-280. (in Chinese with English abstract) |
[33] | Yang YC (杨一川), Zhuang P (庄平), Li XR (黎系荣) (1994). Ecological studies on the forest community of Castanopsis platyacanthi- Schima sinensis on Emei Mountain. Acta Phytoecologica Sinica(植物生态学报), 18,105-120. (in Chinese with English abstract) |
[34] | Yue TX (岳天祥), Ma SJ (马世骏) (1991). Study of ecosystem’s stability. Acta Ecologica Sinica (生态学报), 11,361-366. (in Chinese with English abstract) |
[35] | Zhou XY (周先叶), Wang BS (王伯荪), Li MG (李鸣光) (2000). An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural Reserve, Guangdong Province. Acta Phytoecologica Sinica (植物生态学报), 24,332-339. (in Chinese with English abstract) |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[3] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[4] | 张零念, 朱贵青, 杨宽, 刘星月, 巩合德, 郑丽. 滇中云南杨梅灌丛主要木本植物生态位与种间联结[J]. 植物生态学报, 2022, 46(11): 1400-1410. |
[5] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[6] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[7] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
[8] | 龚容, 高琼, 王亚林. 围封对温带半干旱典型草原群落种间关联的影响[J]. 植物生态学报, 2016, 40(6): 554-563. |
[9] | 樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳. 三峡库区水位调度对消落带生态修复中物种筛选实践的影响[J]. 植物生态学报, 2015, 39(4): 416-432. |
[10] | 田文文,王卫,陈安磊,李裕元,李雁勇,谢小立. 红壤稻田弃耕后植被和土壤有机碳对积水与火烧的早期响应[J]. 植物生态学报, 2014, 38(6): 626-634. |
[11] | 宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报, 2014, 38(3): 231-237. |
[12] | 贾呈鑫卓, 李帅锋, 苏建荣, 苏磊. 择伐对思茅松天然林乔木种间与种内关系的影响[J]. 植物生态学报, 2014, 38(12): 1296-1306. |
[13] | 于鸿莹, 陈莹婷, 许振柱, 周广胜. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 2014, 38(10): 1029-1040. |
[14] | 张梓瑜,龚吉蕊,刘敏,黄永梅,晏欣,祁瑜,王忆慧. 温带草原不同土地利用方式下优势种植物和生态系统的气体交换[J]. 植物生态学报, 2013, 37(8): 718-727. |
[15] | 李燕,朱志红. 高寒草甸对刈割、施肥和浇水发生响应的最优植物性状集和功能型[J]. 植物生态学报, 2013, 37(5): 384-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19