植物生态学报 ›› 2012, Vol. 36 ›› Issue (6): 578-586.DOI: 10.3724/SP.J.1258.2012.00578
收稿日期:
2011-12-07
接受日期:
2012-04-11
出版日期:
2012-12-07
发布日期:
2012-06-04
通讯作者:
杨万勤
作者简介:
*(E-mail:scyangwq@163.com)
KANG Li-Na, WU Fu-Zhong, YANG Wan-Qin*(), TAN Bo, XIA Lei
Received:
2011-12-07
Accepted:
2012-04-11
Online:
2012-12-07
Published:
2012-06-04
Contact:
YANG Wan-Qin
摘要:
为深入了解欧美杂交杨(Populus deltoids × Populus nigra)在不同铅(Pb)胁迫条件下的生长适应特性, 采用盆栽控制试验, 研究了长江上游典型酸性紫色土和钙质紫色土上欧美杂交杨碳(C)、氮(N)和磷(P)积累与分配特征对不同浓度Pb胁迫(CK: 0 mg·kg-1; T1: 200 mg·kg-1; T2: 450 mg·kg-1; T3: 2000 mg·kg-1)的响应。欧美杂交杨总C、N和P积累量在两种土壤中均表现出随Pb胁迫程度的增加而降低的趋势, 且钙质紫色土中欧美杂交杨总C、N和P积累量在各处理浓度下均高于酸性紫色土。Pb胁迫处理明显改变了欧美杂交杨各器官C、N和P的分配格局。与对照相比, Pb胁迫处理使酸性紫色土中欧美杂交杨细根C、N和P积累量的比例明显增加, 叶C、N和P积累量的比例则呈现出降低的趋势。相对于酸性紫色土, 钙质紫色土中欧美杂交杨细根C、N和P积累量的比例明显降低, 其叶C、N和P积累量的比例则表现出增加的趋势。两种土壤中欧美杂交杨P的利用效率均表现出随Pb胁迫程度的增加而增加的趋势, 而T2、T3处理下两种土壤中N的利用效率均显著降低。这些结果表明, 在N素缺乏的情况下, 酸性紫色土中欧美杂交杨P的利用效率显著低于钙质紫色土, 因此酸性紫色土中植物C、N和P积累、分配与利用更易受到Pb胁迫的影响。同时也表明, 钙质紫色土中欧美杂交杨通过改变养分分配格局将资源更多地分配于养分利用器官维持自身的生长, 能更好地适应Pb胁迫环境。
康丽娜, 吴福忠, 杨万勤, 谭波, 夏磊. 铅胁迫对欧美杂交杨幼苗碳、氮和磷积累与分配的影响. 植物生态学报, 2012, 36(6): 578-586. DOI: 10.3724/SP.J.1258.2012.00578
KANG Li-Na, WU Fu-Zhong, YANG Wan-Qin, TAN Bo, XIA Lei. Effects of Pb stress on C, N and P accumulation and allocation in Populus deltoids × P. nigra seedlings. Chinese Journal of Plant Ecology, 2012, 36(6): 578-586. DOI: 10.3724/SP.J.1258.2012.00578
pH | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorous (g·kg-1) | 全钾 Total potassium (g·kg-1) | 有机碳 Organic carbon (g·kg-1) | 全铅 Total plumbum (mg·kg-1) | |
---|---|---|---|---|---|---|
酸性紫色土 Acid purple soil | 5.77 ± 0.06 | 2.21 ± 0.08 | 0.53 ± 0.04 | 14.54 ± 0.67 | 19.65 ± 1.05 | 47.12 ± 3.67 |
钙质紫色土 Alkaline purple soil | 8.33 ± 0.07 | 3.11 ± 0.09 | 1.29 ± 0.04 | 20.97 ± 1.25 | 14.37 ± 1.37 | 30.48 ± 2.85 |
表1 供试土壤基本理化性质及重金属含量(平均值±标准偏差)
Table 1 Basic physical and chemical properties and contents of heavy metals in test soil (mean ± SD)
pH | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorous (g·kg-1) | 全钾 Total potassium (g·kg-1) | 有机碳 Organic carbon (g·kg-1) | 全铅 Total plumbum (mg·kg-1) | |
---|---|---|---|---|---|---|
酸性紫色土 Acid purple soil | 5.77 ± 0.06 | 2.21 ± 0.08 | 0.53 ± 0.04 | 14.54 ± 0.67 | 19.65 ± 1.05 | 47.12 ± 3.67 |
钙质紫色土 Alkaline purple soil | 8.33 ± 0.07 | 3.11 ± 0.09 | 1.29 ± 0.04 | 20.97 ± 1.25 | 14.37 ± 1.37 | 30.48 ± 2.85 |
图1 不同浓度铅处理下欧美杂交杨各器官C、N和P含量的变化(平均值±标准偏差, n = 5)。CK、T1、T2、T3的铅浓度分别为0、200、450和2 000 mg·kg-1干土。 不同大写字母表示不同土壤、同一处理下的差异显著(p < 0.05); 不同小写字母表示同一土壤、不同处理间的差异显著(p < 0.05)。
Fig. 1 Variation of C, N and P contents in different organs of Populus deltoids × P. nigra under different plumbum concentration treatments (mean ± SD, n = 5). CK, T1, T2, and T3, plumbum concentration is 0, 200, 450 and 2 000 mg·kg-1dry soil, respectively. Different capital letters indicate significant differences in different soil within the same treatment, and different small letters indicate significant differences in the same soil among different treatments (p < 0.05).
处理 Treatment | 茎积累量 Stem accumulation (g) | 叶积累量 Leaf accumulation (g) | 细根积累量 Fine root accumulation (g) | 粗根积累量 Coarse root accumulation (g) | 总积累量 Total accumulation (g) | ||
---|---|---|---|---|---|---|---|
酸性紫色土 Acid purple soil | C | CK | 24.39 ± 3.00Aa | 12.67 ± 2.12Aa | 4.86 ± 0.46Aa | 23.38 ± 0.96Aa | 65.30 ± 3.65Aa |
T1 | 20.51 ± 2.07Aab | 7.96 ± 0.86Ab | 9.18 ± 1.24Ab | 18.72 ± 1.48Ab | 56.37 ± 1.53Ab | ||
T2 | 16.59 ± 1.64Ab | 9.86 ± 0.76Ab | 4.08 ± 1.42Aa | 19.61 ± 0.79Ab | 50.15 ± 0.43Ac | ||
T3 | 12.30 ± 1.62Ac | 5.24 ± 1.64Ac | 3.21 ± 0.17Aa | 14.35 ± 1.55Ac | 35.10 ± 1.82Ad | ||
N | CK | 0.31 ± 0.07Aa | 0.33 ± 0.02Aa | 0.08 ± 0.01Aa | 0.26 ± 0.05Aa | 0.98 ± 0.10Aa | |
T1 | 0.25 ± 0.01Aab | 0.22 ± 0.06Abc | 0.14 ± 0.02Ab | 0.18 ± 0.03Ab | 0.79 ± 0.04Ab | ||
T2 | 0.26 ± 0.07Aab | 0.29 ± 0.05Aab | 0.06 ± 0.03Aa | 0.26 ± 0.04Aa | 0.87 ± 0.11Aab | ||
T3 | 0.20 ± 0.02Ab | 0.18 ± 0.08Ac | 0.07 ± 0.01Aa | 0.16 ± 0.04Ab | 0.62 ± 0.06Ac | ||
P | CK | 0.074 ± 0.012Aa | 0.047 ± 0.007Aa | 0.021 ± 0.002Aa | 0.044 ± 0.007Aa | 0.186 ± 0.011Aa | |
T1 | 0.055 ± 0.009Abc | 0.032 ± 0.004Ab | 0.039 ± 0.007Ab | 0.041 ± 0.010Aa | 0.166 ± 0.022Ab | ||
T2 | 0.057 ± 0.009Ab | 0.036 ± 0.006Ab | 0.019 ± 0.005Aa | 0.032 ± 0.011Ab | 0.144 ± 0.021Ac | ||
T3 | 0.043 ± 0.002Ac | 0.019 ± 0.005Ac | 0.014 ± 0.001Aa | 0.019 ± 0.003Ac | 0.095 ± 0.004Ad | ||
钙质紫色土 Alkaline purple soil | C | CK | 36.12 ± 2.00Ba | 14.09 ± 1.85Aa | 7.78 ± 0.76Aa | 19.58 ± 2.36Aa | 77.57 ± 1.78Ba |
T1 | 34.25 ± 2.70Ba | 12.33 ± 1.37Aab | 4.47 ± 0.76Bb | 17.26 ± 1.16Aab | 68.31 ± 4.47Bb | ||
T2 | 27.21 ± 1.66Bb | 10.49 ± 0.34Abc | 4.35 ± 0.57Ab | 15.79 ± 0.81Bb | 57.84 ± 2.15Bc | ||
T3 | 16.38 ± 2.15Bc | 8.58 ± 0.41Bc | 2.69 ± 0.29Ac | 11.27 ± 0.40Bc | 38.92 ± 2.18Bd | ||
N | CK | 0.46 ± 0.08Aa | 0.34 ± 0.17Aa | 0.13 ± 0.01Ba | 0.25 ± 0.08Aa | 1.18 ± 0.10Aa | |
T1 | 0.40 ± 0.06Ba | 0.40 ± 0.06Ba | 0.08 ± 0.02Bb | 0.20 ± 0.04Aab | 1.08 ± 0.09Bab | ||
T2 | 0.37 ± 0.08Aab | 0.32 ± 0.07Aa | 0.07 ± 0.01Ab | 0.19 ± 0.02Bab | 0.95 ± 0.16Ab | ||
T3 | 0.25 ± 0.04Ab | 0.27 ± 0.02Aa | 0.05 ± 0.01Ab | 0.12 ± 0.01Ab | 0.69 ± 0.04Ac | ||
P | CK | 0.101 ± 0.007Ba | 0.043 ± 0.013Aa | 0.033 ± 0.007Ba | 0.038 ± 0.010Aa | 0.216 ± 0.014Aa | |
T1 | 0.085 ± 0.007Bb | 0.040 ± 0.005Aa | 0.020 ± 0.006Bb | 0.034 ± 0.006Aa | 0.179 ± 0.014Ab | ||
T2 | 0.071 ± 0.011Ac | 0.033 ± 0.002Ab | 0.018 ± 0.003Ab | 0.027 ± 0.001Bb | 0.149 ± 0.009Ac | ||
T3 | 0.038 ± 0.003Ad | 0.022 ± 0.001Ac | 0.009 ± 0.001Bc | 0.015 ± 0.002Bc | 0.084 ± 0.001Bd |
表2 不同铅浓度处理下欧美杂交杨幼苗各器官的C、N和P积累量(平均值±标准偏差, n = 5)
Table 2 C, N and P accumulations in different organs of Populus deltoids × P. nigra seedlings under different plumbum supplies (means ± SD, n = 5)
处理 Treatment | 茎积累量 Stem accumulation (g) | 叶积累量 Leaf accumulation (g) | 细根积累量 Fine root accumulation (g) | 粗根积累量 Coarse root accumulation (g) | 总积累量 Total accumulation (g) | ||
---|---|---|---|---|---|---|---|
酸性紫色土 Acid purple soil | C | CK | 24.39 ± 3.00Aa | 12.67 ± 2.12Aa | 4.86 ± 0.46Aa | 23.38 ± 0.96Aa | 65.30 ± 3.65Aa |
T1 | 20.51 ± 2.07Aab | 7.96 ± 0.86Ab | 9.18 ± 1.24Ab | 18.72 ± 1.48Ab | 56.37 ± 1.53Ab | ||
T2 | 16.59 ± 1.64Ab | 9.86 ± 0.76Ab | 4.08 ± 1.42Aa | 19.61 ± 0.79Ab | 50.15 ± 0.43Ac | ||
T3 | 12.30 ± 1.62Ac | 5.24 ± 1.64Ac | 3.21 ± 0.17Aa | 14.35 ± 1.55Ac | 35.10 ± 1.82Ad | ||
N | CK | 0.31 ± 0.07Aa | 0.33 ± 0.02Aa | 0.08 ± 0.01Aa | 0.26 ± 0.05Aa | 0.98 ± 0.10Aa | |
T1 | 0.25 ± 0.01Aab | 0.22 ± 0.06Abc | 0.14 ± 0.02Ab | 0.18 ± 0.03Ab | 0.79 ± 0.04Ab | ||
T2 | 0.26 ± 0.07Aab | 0.29 ± 0.05Aab | 0.06 ± 0.03Aa | 0.26 ± 0.04Aa | 0.87 ± 0.11Aab | ||
T3 | 0.20 ± 0.02Ab | 0.18 ± 0.08Ac | 0.07 ± 0.01Aa | 0.16 ± 0.04Ab | 0.62 ± 0.06Ac | ||
P | CK | 0.074 ± 0.012Aa | 0.047 ± 0.007Aa | 0.021 ± 0.002Aa | 0.044 ± 0.007Aa | 0.186 ± 0.011Aa | |
T1 | 0.055 ± 0.009Abc | 0.032 ± 0.004Ab | 0.039 ± 0.007Ab | 0.041 ± 0.010Aa | 0.166 ± 0.022Ab | ||
T2 | 0.057 ± 0.009Ab | 0.036 ± 0.006Ab | 0.019 ± 0.005Aa | 0.032 ± 0.011Ab | 0.144 ± 0.021Ac | ||
T3 | 0.043 ± 0.002Ac | 0.019 ± 0.005Ac | 0.014 ± 0.001Aa | 0.019 ± 0.003Ac | 0.095 ± 0.004Ad | ||
钙质紫色土 Alkaline purple soil | C | CK | 36.12 ± 2.00Ba | 14.09 ± 1.85Aa | 7.78 ± 0.76Aa | 19.58 ± 2.36Aa | 77.57 ± 1.78Ba |
T1 | 34.25 ± 2.70Ba | 12.33 ± 1.37Aab | 4.47 ± 0.76Bb | 17.26 ± 1.16Aab | 68.31 ± 4.47Bb | ||
T2 | 27.21 ± 1.66Bb | 10.49 ± 0.34Abc | 4.35 ± 0.57Ab | 15.79 ± 0.81Bb | 57.84 ± 2.15Bc | ||
T3 | 16.38 ± 2.15Bc | 8.58 ± 0.41Bc | 2.69 ± 0.29Ac | 11.27 ± 0.40Bc | 38.92 ± 2.18Bd | ||
N | CK | 0.46 ± 0.08Aa | 0.34 ± 0.17Aa | 0.13 ± 0.01Ba | 0.25 ± 0.08Aa | 1.18 ± 0.10Aa | |
T1 | 0.40 ± 0.06Ba | 0.40 ± 0.06Ba | 0.08 ± 0.02Bb | 0.20 ± 0.04Aab | 1.08 ± 0.09Bab | ||
T2 | 0.37 ± 0.08Aab | 0.32 ± 0.07Aa | 0.07 ± 0.01Ab | 0.19 ± 0.02Bab | 0.95 ± 0.16Ab | ||
T3 | 0.25 ± 0.04Ab | 0.27 ± 0.02Aa | 0.05 ± 0.01Ab | 0.12 ± 0.01Ab | 0.69 ± 0.04Ac | ||
P | CK | 0.101 ± 0.007Ba | 0.043 ± 0.013Aa | 0.033 ± 0.007Ba | 0.038 ± 0.010Aa | 0.216 ± 0.014Aa | |
T1 | 0.085 ± 0.007Bb | 0.040 ± 0.005Aa | 0.020 ± 0.006Bb | 0.034 ± 0.006Aa | 0.179 ± 0.014Ab | ||
T2 | 0.071 ± 0.011Ac | 0.033 ± 0.002Ab | 0.018 ± 0.003Ab | 0.027 ± 0.001Bb | 0.149 ± 0.009Ac | ||
T3 | 0.038 ± 0.003Ad | 0.022 ± 0.001Ac | 0.009 ± 0.001Bc | 0.015 ± 0.002Bc | 0.084 ± 0.001Bd |
图2 不同铅浓度处理下欧美杂交杨幼苗各器官C、N和P的分配特征。CK、T1、T2、T3铅浓度分别为0、200、450和2 000 mg·kg-1干土。
Fig. 2 Allocation characteristics of C, N and P in different organs of Populus deltoides×P. nigra seedlings under different plumbum supplies. CK, T1, T2, and T3, plumbum supplies is 0, 200, 450 and 2 000 mg·kg-1 dry soil, respectively.
处理 Treatment | 叶C/N Leaf C/N | 叶N/P Leaf N/P | 总C/N Total C/N | 总N/P Total N/P | N利用效率NUEN (g mass·g-1) | P利用效率NUEP (g mass·g-1) | |
---|---|---|---|---|---|---|---|
酸性紫色土 Acid purple soil | CK | 38.08 ± 4.16Aa | 7.13 ± 0.68Aa | 66.76 ± 6.06Aa | 5.31 ± 0.53Aab | 133.39 ± 12.46Aab | 703.27 ± 5.30Aa |
T1 | 35.86 ± 4.86Aa | 7.13 ± 1.18Aa | 71.27 ± 3.65Aa | 4.76 ± 0.29Aa | 148.85 ± 7.37Aa | 707.47 ± 13.38Aa | |
T2 | 34.81 ± 5.24Aa | 7.87 ± 1.11Aa | 57.78 ± 6.69Ab | 6.07 ± 0.69Abc | 122.78 ± 13.62Ab | 738.53 ± 8.11Ab | |
T3 | 30.94 ± 8.43Aa | 9.47 ± 2.13Aa | 57.15 ± 3.43Ab | 6.50 ± 0.31Ac | 124.04 ± 8.52Ab | 805.04 ± 24.31Ab | |
钙质紫色土 Alkaline purple soil | CK | 34.91 ± 2.06Aa | 7.60 ± 3.35Ba | 65.96 ± 4.57Aa | 5.47 ± 0.28Aa | 135.75 ± 8.22Aa | 741.29 ± 11.33Ba |
T1 | 30.88 ± 1.85Aa | 10.11 ± 0.7Bab | 63.60 ± 2.57Ba | 6.01 ± 0.06Ba | 131.61 ± 2.00Bab | 791.22 ± 9.19Bb | |
T2 | 33.47 ± 8.21Aa | 9.94 ± 2.18Aa | 61.98 ± 11.86Aa | 6.40 ± 1.03Aa | 119.85 ± 4.28Abc | 821.10 ± 4.73Bc | |
T3 | 31.59 ± 1.65Aa | 12.31 ± 0.35Bb | 56.57 ± 0.63Aa | 8.20 ± 0.27Bb | 122.79 ± 3.83Ac | 1005.94 ± 1.56Bd |
表3 不同铅浓度处理下欧美杂交杨幼苗的叶C/N、叶N/P、总C/N、总N/P、N利用效率和P利用效率(平均值±标准偏差, n = 5)
Table 3 Leaf C/N, leaf N/P, total C/N, total N/P, N use efficiency (NUEN) and P use efficiency (NUEP) of Populus deltoides × P. nigra seedlings under different plumbum concentration treatments (means ± SD, n = 5)
处理 Treatment | 叶C/N Leaf C/N | 叶N/P Leaf N/P | 总C/N Total C/N | 总N/P Total N/P | N利用效率NUEN (g mass·g-1) | P利用效率NUEP (g mass·g-1) | |
---|---|---|---|---|---|---|---|
酸性紫色土 Acid purple soil | CK | 38.08 ± 4.16Aa | 7.13 ± 0.68Aa | 66.76 ± 6.06Aa | 5.31 ± 0.53Aab | 133.39 ± 12.46Aab | 703.27 ± 5.30Aa |
T1 | 35.86 ± 4.86Aa | 7.13 ± 1.18Aa | 71.27 ± 3.65Aa | 4.76 ± 0.29Aa | 148.85 ± 7.37Aa | 707.47 ± 13.38Aa | |
T2 | 34.81 ± 5.24Aa | 7.87 ± 1.11Aa | 57.78 ± 6.69Ab | 6.07 ± 0.69Abc | 122.78 ± 13.62Ab | 738.53 ± 8.11Ab | |
T3 | 30.94 ± 8.43Aa | 9.47 ± 2.13Aa | 57.15 ± 3.43Ab | 6.50 ± 0.31Ac | 124.04 ± 8.52Ab | 805.04 ± 24.31Ab | |
钙质紫色土 Alkaline purple soil | CK | 34.91 ± 2.06Aa | 7.60 ± 3.35Ba | 65.96 ± 4.57Aa | 5.47 ± 0.28Aa | 135.75 ± 8.22Aa | 741.29 ± 11.33Ba |
T1 | 30.88 ± 1.85Aa | 10.11 ± 0.7Bab | 63.60 ± 2.57Ba | 6.01 ± 0.06Ba | 131.61 ± 2.00Bab | 791.22 ± 9.19Bb | |
T2 | 33.47 ± 8.21Aa | 9.94 ± 2.18Aa | 61.98 ± 11.86Aa | 6.40 ± 1.03Aa | 119.85 ± 4.28Abc | 821.10 ± 4.73Bc | |
T3 | 31.59 ± 1.65Aa | 12.31 ± 0.35Bb | 56.57 ± 0.63Aa | 8.20 ± 0.27Bb | 122.79 ± 3.83Ac | 1005.94 ± 1.56Bd |
[1] |
Ashraf MY, Azhar N, Ashraf M, Hussain M, Arshad M (2011). Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. Journal of Environmental Biology, 32, 659-666.
URL PMID |
[2] | Beladi M, Kashani A, Habibi D, Paknejad F, Golshan M (2011). Uptake and effects of lead and copper on three plant species in contaminated soils: role of phytochelatin. African Journal of Agricultural Research, 6, 3483-3492. |
[3] | Broadley MR, Escobar-Gutiérrez AJ, Burns A, Burns IG (2000). What are the effects of nitrogen deficiency on growth components of lettuce? New Phytologist, 147, 519-526. |
[4] | Fu XP ( 傅晓萍), Dou CM ( 豆长明), Hu SP ( 胡少平), Chen XC ( 陈新才), Shi JY ( 施积炎), Chen YX ( 陈英旭) (2010). A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants. Chinese Journal of Plant Ecology (植物生态学报), 34, 1354-1358. (in Chinese with English abstract) |
[5] |
Gopal R, Rizvi AH (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70, 1539-1544.
URL PMID |
[6] | Hirel B, Andrieu B, Valadier MH, Renard S, Quilleré I, Chelle M, Pommel B, Fournier C, Drouet JL (2005). Physiology of maize II. Identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiologia Plantarum, 124, 178-188. |
[7] | Jian Y ( 简毅), Yang WQ ( 杨万勤), Zhang J ( 张健), Du B ( 杜波), Lin J ( 林静), Wang A ( 王奥), Zhou LQ ( 周利强) (2009). Characteristics and ecological risk of soil pollution in the lower reaches (Wutongqiao Section) of Minjiang River. Journal of Agro-Environment Science (农业环境科学学报), 28, 256-262. (in Chinese with English abstract) |
[8] | Kibria MG, Maniruzzaman M, Islam M, Oaman KT (2010). Effects of soil-applied lead on growth and partitioning of ion concentration in Spinacea oleracea L. tissues. Soil and Environment, 29, 1-6. |
[9] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[10] | Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2007). Toxic effects of Pb2+ on the growth and mineral nutrition of signal grass (Brachiaria decumbens) and rhodes grass(Chloris gayana) . Plant and Soil, 300, 127-136. |
[11] | Li YZ ( 李亚藏), Wang QC ( 王庆成) (2011). Comparison on characters of lead stress resistance of four northern broadleaved tree species. Journal of Nanjing Forestry University (Natural Science Edition) (南京林业大学学报(自然科学版)), 35(4), 143-146. (in Chinese with English abstract) |
[12] | Lu RK ( 鲁如坤) (2000). Soil and Agro-Chemical Analytical Methods (土壤农业化学分析方法). China Agricultural Science and Technology Press, Beijing. 318-379. (in Chinese) |
[13] | Miao HT ( 苗惠田), Zhang WJ ( 张文菊), Lü JL ( 吕家珑), Huang SM ( 黄绍敏), Xu MG ( 徐明岗) (2010). Effects of long-term fertilization on assimilated carbon content and distribution proportion of maize in fluvio-aquic soil. Scientia Agricultura Sinica (中国农业科学), 43, 4852-4861. (in Chinese with English abstract) |
[14] | Mojiri A (2011). The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. Journal of Biological and Environmental Science, 5(13), 17-22. |
[15] |
Patternson TB, Guy RD, Dang QL (1997). Whole-plant nitrogen- and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia, 110, 160-168.
URL PMID |
[16] | Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007). Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biologia Plantarum, 51, 121-128. |
[17] | Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environment Research, 5, 961-970. |
[18] |
Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005). Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere,( 60, 97-104.
URL PMID |
[19] | Rossato LV, Nicoloso FT, Farias JG, Cargnelluti D, Tabaldi LA, Antes FG, Dressler VL, Morsch VM, Schetinger MRC (2011). Effects of lead on the growth, lead accumulation and physiological responses of Pluchea sagittalis. Ecotoxicology, 21, 111-123. |
[20] | Sharma P, Dubey RS (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35-52. |
[21] |
Sinhal VK, Srivastava A, Singh VP (2010). EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). Journal of Environmental Biology, 31, 255-259.
URL PMID |
[22] |
Sorgonà A, Abenavoli MR, Gringeri PG, Cacco G (2006). A comparison of nitrogen use efficiency definitions in Citrus rootstocks. Scientia Horticulturae, 109, 389-393.
DOI URL |
[23] |
Uveges JL, Corbett AL, Mal TK (2002). Effects of lead contamination on the growth of Lythrum salicaria(purple loosestrife). Environmental Pollution, 120, 319-323.
DOI URL PMID |
[24] |
Wang JY ( 王晶苑), Wang SQ ( 王绍强), Li RL ( 李纫兰), Yan JH ( 闫俊华), Sha LQ ( 沙丽清), Han SJ ( 韩士杰) (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology (植物生态学报), 35, 587-595. (in Chinese with English abstract)
DOI URL |
[25] | Wu FZ ( 吴福忠), Bao WK ( 包维楷), Wu N ( 吴宁) (2008). Growth, accumulation and partitioning of biomass, C, N and P of Sophora davidii seedlings in response to N supply in dry valley of upper Minjiang River. Acta Ecologica Sinica (生态学报), 28, 3817-3824. (in Chinese with English abstract) |
[26] | Wu FZ ( 吴福忠), Yang WQ ( 杨万勤), Zhang J ( 张健), Zhou LQ ( 周利强) (2010). Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii. Chinese Journal of Plant Ecology (植物生态学报), 34, 1220-1226. (in Chinese with English abstract) |
[27] | Wu FZ, Yang WQ, Wang KY, Wu N, Lu YJ (2009). Effect of stem density on leaf nutrient dynamics and nutrient use efficiency of dwarf bamboo. Pedosphere, 19, 496-504. |
[28] |
Wu FZ, Yang WQ, Zhang J, Zhou LQ (2010). Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Materials, 177, 268-273.
URL PMID |
[29] |
Xiong ZT, Zhao F, Li MJ (2006). Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environmental Toxicology, 21, 147-153.
URL PMID |
[30] | Zhang J ( 张健) (2009). Integrated Management on Soil and Water Loss in the Hilly Area and Regional Sustainable Development in Sichuan Province (四川盆地低山丘陵区水土流失综合治理及区域可持续发展). Sichuan Science & Technology Press, Chengdu. 105. (in Chinese) |
[31] | Zhou QX ( 周启星), Wei SH ( 魏树和), Diao CY ( 刁春燕) (2007). Basic principles and researching progresses in ecological remediation of contaminated soils. Journal of Agro-Environment Science (农业环境科学学报), 26, 419-424. (in Chinese with English abstract) |
[32] | Zhu YG ( 朱永官) (2003). Micro-interfacial processes in soil- plant systems and their environmental impacts. Acta Scientiae Circumstantiae (环境科学学报), 23, 205-210. (in Chinese with English abstract) |
[1] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[2] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[3] | 吴秀芝, 阎欣, 王波, 刘任涛, 安慧. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响[J]. 植物生态学报, 2018, 42(10): 1022-1032. |
[4] | 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630. |
[5] | 刘洋,张健,陈亚梅,陈磊,刘强. 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响[J]. 植物生态学报, 2013, 37(10): 933-941. |
[6] | 唐罗忠, 刘志龙, 虞木奎, 方升佐, 赵丹, 王子寅. 两种立地条件下麻栎人工林地上部分养分的积累和分配[J]. 植物生态学报, 2010, 34(6): 661-670. |
[7] | 吴福忠, 杨万勤, 张健, 周利强. 镉胁迫对桂花生长和养分积累、分配与利用的影响[J]. 植物生态学报, 2010, 34(10): 1220-1226. |
[8] | 何维明. 黍气体交换对异质养分环境的反应[J]. 植物生态学报, 2001, 25(3): 331-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19