植物生态学报 ›› 2017, Vol. 41 ›› Issue (11): 1208-1218.DOI: 10.17521/cjpe.2017.0084
• 综述 • 上一篇
窦渤凯1,2, 王义东1,*(), 薛冬梅1, 王中良1,2
收稿日期:
2017-03-31
接受日期:
2017-11-14
出版日期:
2017-11-10
发布日期:
2017-11-10
通讯作者:
王义东
Bo-Kai DOU1,2, Yi-Dong WANG1,*(), Dong-Mei XUE1, Zhong-Liang WANG1,2
Received:
2017-03-31
Accepted:
2017-11-14
Online:
2017-11-10
Published:
2017-11-10
Contact:
Yi-Dong WANG
摘要:
甲烷(CH4)是一种重要的温室气体, 参与大气光化学反应。水生与湿生环境是大气CH4的重要来源。挺水和湿生草本植物是CH4释放的重要通道, 研究植物如何传输CH4具有重要的意义。在植物传输CH4的过程中, 根系尤其是侧根根尖区起到了关键调控作用; 通气组织内部的隔膜与根茎连接部位也是调控CH4传输的重要界面。在早期的研究中, 关于茎叶排放CH4主要通过气孔还是微孔(位于地上部除叶片以外的细小的裂隙与孔洞)这一问题存有争议, 但是微孔的主导传输作用逐渐被后期的研究证实。枯死与损伤的茎干通常促进CH4传输排放。扩散与对流是植物传输CH4的两种主要机制, 对流的传输效率高于扩散。生物因素(生物量与光合作用等)与环境因子(光照与温、湿度等)共同调控着植物传输CH4。目前针对植物传输CH4的过程与机制已有较系统的认识, 但需要深入研究下列问题: (1)植物传输CH4的系列关键界面中, 各个界面的传输效率如何? 哪个界面对整体传输起决定性作用? (2)扩散与对流分别对各界面交换与整体长距离传输的内在调控作用。(3)各生物与非生物影响因子间的耦合作用机制。(4)物种间CH4传输机制与效率的异同。
窦渤凯, 王义东, 薛冬梅, 王中良. 挺水和湿生草本植物传输甲烷的过程与机制研究进展. 植物生态学报, 2017, 41(11): 1208-1218. DOI: 10.17521/cjpe.2017.0084
Bo-Kai DOU, Yi-Dong WANG, Dong-Mei XUE, Zhong-Liang WANG. Research advancement in the processes and mechanisms of transporting methane by emerged herbaceous plants and hygrophytes. Chinese Journal of Plant Ecology, 2017, 41(11): 1208-1218. DOI: 10.17521/cjpe.2017.0084
图1 植物传输CH4的关键过程与机制示意图。A, 根系部位。B, 根茎连接部位。C, 茎节与节间部位。D, 叶片部位。箭头表示CH4传输方向。
Fig. 1 Illustrations of key transporting processes and mechanisms of methane by emerged herbaceous plants and hygrophytes. A, root zone. B, root collar zone. C, node and internode of stem zone. D, leaf zone. The arrows indicate the direction of methane flows.
[1] | Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017). Rising plant-mediated methane emissions from arctic wetlands.Global Change Biology, 23, 1128-1139. |
[2] |
Arkebauer TJ, Chanton JP, Verma SB, Kim J (2001). Field measurements of internal pressurization in Phragmites australis(Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland. American Journal of Botany, 88, 653-658.
DOI URL PMID |
[3] |
Armstrong J, Armstrong W (1990). Light enhanced convective through flow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytologist, 114, 121-128.
DOI URL |
[4] | Armstrong J, Armstrong W (1991). A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany, 39, 75-88. |
[5] |
Armstrong J, Armstrong W, Beckett PM (1992). Phragmites australis: Venturi and humidity induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytologist, 120, 197-207.
DOI URL |
[6] |
Armstrong J, Armstrong W, Beckett PM, Halderb JE, Lythe S, Holt R, Sinclair A (1996). Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi- induced convections inPhragmites australis(Cav.) Trin. ex Steud. Aquatic Botany, 54, 177-197.
DOI URL |
[7] | Armstrong W, Armstrong J, Beckett PM, Justin SHFW (1991). Convective gas-flows in wetland plant aeration. Plant Life Under Oxygen Deprivation, 283, 283-302. |
[8] |
Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000a). Methane transport capacity of rice plants. I. Influence of methane concentration and growth stage analyzed with an automated measuring system.Nutrient Cycling in Agroecosystems, 58, 357-366.
DOI URL |
[9] |
Aulakh MS, Wassmann R, Rennenberg H, Fink S (2000b). Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars.Plant Biology, 2, 182-194.
DOI URL |
[10] |
Beckett PM, Armstrong W, Armstrong J (2001). Mathematical modelling of methane transport by Phragmites: The potential for diffusion within the roots and rhizosphere. Aquatic Botany, 69, 293-312.
DOI URL |
[11] | Bendix M, Tornbjerg T, Brix H (1994). Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity- induced pressurization and convective throughflow. Aquatic Botany, 49, 75-89. |
[12] |
Berg M, Ingwersen J, Lamers M, Streck T (2016). The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in southwest Germany. Biogeosciences, 13, 6107-6119.
DOI URL |
[13] |
Bodegom PM, Groot T, van den Hout B, Leffelaar PA, Goudriaan J (2001). Diffusive gas transport through flooded rice systems.Journal of Geophysical Research Atmospheres, 106, 20861-20873.
DOI URL |
[14] |
Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL (2013). Methane emissions from wetlands: Biogeochemical, microbial and modeling perspectives from local to global scales.Global Change Biology, 19, 1325-1346.
DOI URL PMID |
[15] | Brix H (1989). Gas exchange through dead culms of reed,Phragmites australis(Cav.) Trin. ex Steud. Aquatic Botany, 35, 81-98. |
[16] |
Brix H, Sorrell BK, Orr PT (1992). Internal pressurization and convective gas flow in some emergent freshwater macrophytes.Limnology & Oceanography, 37, 1420-1433.
DOI URL |
[17] | Brix H, Sorrell BK, Schierup HH (1996). Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquatic Botany, 54, 151-163. |
[18] |
Butterbach-Bahl K, Papen H, Rennenberg H (1997). Impact of gas transport through rice cultivars on methane emission from rice paddy fields.Plant, Cell & Environment, 20, 1175-1183.
DOI URL |
[19] |
Cao YY, Xu JB, Zhu QS (2003). Effect of rice root system on methane transmission velocity.Journal of Anhui Agricultural Science, 31, 90-92. (in Chinese with English abstract)[曹云英, 许锦彪, 朱庆森 (2003). 水稻根系对甲烷传输速率的影响. 安徽农业科学, 31, 90-92.]
DOI URL |
[20] |
Cao YY, Xu JB, Zu QS (2005). Effect of rice plant status and difference rice varieties on methane transport rate.Acta Agriculturae Boreali-Sinica, 20, 105-109. (in Chinese with English abstract)[曹云英, 许锦彪, 朱庆森 (2005). 水稻植株状况对甲烷传输速率的影响及其品种间差异. 华北农学报, 20, 105-109.]
DOI URL |
[21] | Chanton JP, Arkebauer TJ, Harden HS, Verma SB (2002). Diel variation in lacunal CH4 and CO2 concentration and δ13C in Phragmites australis. Biogeochemistry, 59, 287-301. |
[22] |
Chanton JP, Whiting GJ, Happell JD, Gerard G (1993). Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes.Aquatic Botany, 46, 111-128.
DOI URL |
[23] | Chanton JP, Whiting GJ, Showers WJ, Crill PM (1992). Methane flux from Peltandra virginica: Stable isotope tracing and chamber effects. Global Biogeochemical Cycles, 6, 15-31. |
[24] |
Chen H, Zhou S, Wu N, Wang YF, Luo P, Shi FS (2006). Advance in studies on production, oxidation and emission flux of methane from wetlands.Chinese Journal of Applied and Environmental Biology, 12, 726-733. (in Chinese with English abstract)[陈槐, 周舜, 吴宁, 王艳芬, 罗鹏, 石福孙 (2006). 湿地甲烷的产生、氧化及排放通量研究进展. 应用与环境生物学报, 12, 726-733.]
DOI URL |
[25] |
Cheng SP, Wu ZB, Xia YC (2003). Review on gas exchange and transportation in macrophytes.Acta Hydrobiologica Sinica, 27, 413-417. (in Chinese with English abstract)[成水平, 吴振斌, 夏宜琤 (2003). 挺水植物的气体交换与输导代谢. 水生生物学报, 27, 413-417.]
DOI URL |
[26] | Colmer TD (2003). Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots.Plant, Cell & Environment, 26, 17-36. |
[27] | Ding WX, Cai ZC (2003). Effect of plants methane production, oxidation and emission.Chinese Journal of Applied Ecology, 14, 1379-1384. (in Chinese with English abstract)[丁维新, 蔡祖聪 (2003). 植物在CH4产生、氧化和排放中的作用. 应用生态学报, 14, 1379-1384.] |
[28] |
Dingemans BJJ, Bakker ES, Bodelier PLE (2011). Aquatic herbivores facilitate the emission of methane from wetlands.Ecology, 92, 1166-1173.
DOI URL PMID |
[29] |
Duan XN, Wang XK, Chen L, Mu YJ, Ouyang ZY (2007). Methane emission from aquatic vegetation zones of Wuliangsu Lake, Inner Mongolia.Environmental Science, 28, 455-459. (in Chinese with English abstract)[段晓男, 王效科, 陈琳, 牟玉静, 欧阳志云 (2007). 乌梁素海湖泊湿地植物区甲烷排放规律. 环境科学, 28, 455-459.]
DOI URL |
[30] |
Duan XN, Wang XK, Ouyang ZY (2005). Effects of vascular plants on methane emissions from natural wetland.Acta Ecologica Sinica, 25, 3375-3382. (in Chinese with English abstract)[段晓男, 王效科, 欧阳志云 (2005). 维管植物对自然湿地甲烷排放的影响. 生态学报, 25, 3375-3382.]
DOI URL |
[31] | Feng XP, Wang YD, Wang BQ, Wang ZL (2015). Effect of salts on methane emission from wetlands: A review.Chinese Journal of Ecology, 34, 237-246. (in Chinese with English abstract)[冯小平, 王义东, 王博祺, 王中良 (2015). 盐分对湿地甲烷排放影响的研究进展. 生态学杂志, 34, 237-246.] |
[32] | Fu ZQ, Zhu HW, Chen C, Huang H (2012). Research on the correlation between the greenhouse gases emission from paddy field and the biological characteristics of rice root system.Journal of Agro-Environment Science, 30, 2416-2421. (in Chinese with English abstract)[傅志强, 朱华武, 陈灿, 黄璜 (2012). 水稻根系生物特性与稻田温室气体排放相关性研究. 农业环境科学学报, 30, 2416-2421.] |
[33] |
Garnet KN, Megonigal JP, Litchfield C, Taylor Jr GE (2005). Physiological control of leaf methane emission from wetland plants.Aquatic Botany, 81, 141-155.
DOI URL |
[34] | Garthwaite AJ, Armstrong W, Colmer TD (2008). Assessment of O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytologist, 179, 405-416. |
[35] |
Groot TT, van Bodegom PM, Meijer HAJ, Harren FJM (2005). Gas transport through the root-shoot transition zone of rice tillers.Plant and Soil, 277, 107-116.
DOI URL |
[36] |
Grosse W, Büchel HB, Tiebel H (1991). Pressurized ventilation in wetland plants.Aquatic Botany, 39, 89-98.
DOI URL |
[37] |
Han WJ, Shi MM, Chang J, Ren Y, Xu RH, Zhang CB, Ge Y (2017). Plant species diversity reduces N2O but not CH4 emissions from constructed wetlands under high nitrogen levels.Environmental Science and Pollution Research, 24, 5938-5948.
DOI URL PMID |
[38] |
Harden HS, Chanton JP (1994). Locus of methane release and mass-dependent fractionation from two wetland macrophytes.Limnology and Oceanography, 39, 148-154.
DOI URL |
[39] |
Henneberg A, Sorrell BK, Brix H (2012). Internal methane transport through Juncus effusus: Experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation. New Phytologist, 196, 799-806.
DOI URL PMID |
[40] |
Hu QW, Cai JY, Yao B, Wu Q, Wang YQ, Xu XL (2016). Plant-mediated methane and nitrous oxide fluxes from a carex meadow in Poyang Lake during drawdown periods.Plant and Soil, 400, 367-380.
DOI URL |
[41] |
Hu RG (2004). Effects of fertilization on the potential of methane oxidation in upland soil.Ecology and Environment, 13, 74-77. (in Chinese with English abstract)[胡荣桂 (2004). 氮肥对旱地土壤甲烷氧化能力的影响. 生态环境学报, 13, 74-77.]
DOI URL |
[42] | Huang DP, He F, Xiao L, Xu D, Wu ZB (2012). Response between aerenchyma and radial oxygen loss of Acorus calamus Linn. under high nitrogen and phosphorus stress. Journal of Lake Science, 24, 83-88. (in Chinese with English abstract)[黄丹萍, 贺锋, 肖蕾, 徐栋, 吴振斌 (2012). 高氮磷胁迫下菖蒲(Acorus calamus Linn.)通气组织和根系释氧的响应. 湖泊科学, 24, 83-88.] |
[43] |
Huang JF, Tong C, Liu ZX, Xiao HY, Zhang LH (2011). Plant-mediated methane transport and emission from a Spartina alterniflora Marsh. Chinese Bulletin of Botany, 46, 534-543. (in Chinese with English abstract)[黄佳芳, 仝川, 刘泽雄, 肖海燕, 张林海 (2011). 沼泽湿地互花米草植物体传输与排放甲烷特征. 植物学报, 46, 534-543.]
DOI URL |
[44] |
Huang Y, Sass RL, Fisher FM (1997). Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission.Global Change Biology, 3, 491-500.
DOI URL |
[45] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Working Group I: Contribution to the Intergovernmental Panelon Climate Change Fifth Assessment Report. Cambridge University Press, Cambridge, UK. |
[46] | Jackson MB, Armstrong W (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence.Plant Biology, 1, 274-287. |
[47] |
Jia ZJ, Cai ZC (2003). Effects of rice plants on methane emission from paddy fields.Chinese Journal of Applied Ecology, 14, 2049-2053. (in Chinese with English abstract)[贾仲君, 蔡祖聪 (2003). 水稻植株对稻田甲烷排放的影响. 应用生态学报, 14, 2049-2053.]
DOI URL |
[48] | Justin SHFW, Armstrong W (1987). The anatomical characteristics of roots and plant response to soil flooding.New Phytologist, 106, 465-495. |
[49] | K?ki T, Ojala A, Kankaala P (2001). Diel variation in methane emissions from stands of Phragmites australis(Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake. Aquatic Botany, 71, 259-271. |
[50] |
Kelker D, Chanton J (1997). The effect of clipping on methane emissions fromCarex. Biogeochemistry, 39, 37-44.
DOI URL |
[51] | Kim JN, Verma SB, Billesbach DP (1999). Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: Effect of growth stage and plant-mediated transport. Global Change Biology, 5, 433-440. |
[52] |
King JY, Reeburgh WS (2002). A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra.Soil Biology & Biochemistry, 34, 173-180.
DOI URL |
[53] | Kludze HK, DeLaune RD, Patrick WH (1993). Aerenchyma formation and methane and oxygen exchange in rice.Soil Science Society of America Journal, 57, 386-391. |
[54] |
Knapp AK, Yavitt JB (1992). Evaluation of a closed-chamber method for estimating methane emissions from aquatic plants.Tellus B, 44, 63-71.
DOI URL |
[55] |
Laanbroek HJ (2010). Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review.Annals of Botany, 105, 141-153.
DOI URL PMID |
[56] | Lawrence BA, Lishawa SC, Hurst N, Castillo BT (2017). Wetland invasion by Typha × glauca increases soil methane emissions. Aquatic Botany, 137, 80-87. |
[57] | Lee KK, Holst RW, Watanabe I, App A (1981). Gas transport through rice.Soil Science and Plant Nutrition, 27, 151-158. |
[58] |
Lindau CW, Bollich PK, Delaune RD (1995). Effect of rice variety on methane emission from Louisiana rice.Agriculture, Ecosystems & Environment, 54, 109-114.
DOI URL |
[59] | Liu AR, Wang GQ, Zhang XH (2007). Effect of NaCl stress on the anatomic structure of Alternanthera philoxeroides Griseb vegetative organs. Guihaia, 27, 682-686. (in Chinese with English abstract)[刘爱荣, 王桂芹, 章小华(2007). NaCl处理对空心莲子草营养器官解剖结构的影响. 广西植物, 27, 682-686.] |
[60] |
Liu ZX (2011). Plant-Mediated Methane Transport and Methane Emissions from Phragmites australis Marsh in Mjiang River Estuary. Master degree dissertation, School of Geographical Sciences, Fujian Normal University, Fuzhou. 1-45. (in Chinese with English abstract)[刘泽雄 (2010). 闽江河口芦苇湿地植物传输甲烷研究. 硕士学位论文, 福建师范大学地理科学学院, 福州. 1-45.]
DOI URL |
[61] | Ma AN, Lu JJ (2011). Effects of Phragmites australis on methane emission from a brackish estuarine wetland. Acta Ecologica Sinica, 31, 2245-2252. (in Chinese with English abstract)[马安娜, 陆健健 (2011). 芦苇在微咸水河口湿地甲烷排放中的作用. 生态学报, 31, 2245-2252.] |
[62] |
Mer JL, Roger P (2001). Production, oxidation, emission and consumption of methane by soils: A Review.European Journal of Soil Biology, 37, 25-50.
DOI URL |
[63] |
Mishra S, Rath AK, Adhya TK, Rao VR, Sethunathan N (1997). Effect of continuous and alternate water regimes, on methane efflux from rice under greenhouse conditions.Biology and Fertility of Soils, 24, 399-405.
DOI URL |
[64] |
Mo Y, Deng ZH, Gao JQ, Guo YX, Yu FH (2015). Does richness of emergent plants affect CO2 and CH4 emissions in experimental wetlands?Freshwater Biology, 60, 1537-1544.
DOI URL |
[65] |
Montzka SA, Dlugokencky EJ, Butler JH (2011). Non-CO2 greenhouse gases and climate change.Nature, 476, 43-50.
DOI URL PMID |
[66] |
Morrissey LA, Zobel DB, Livingston GP (1993). Significance of stomatal control on methane release fromCarex-dominated wetlands. Chemosphere, 26, 339-355.
DOI URL |
[67] |
Munns R (1993). Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses.Plant, Cell & Environment, 16, 15-24.
DOI URL |
[68] |
Neue HU, Wassmann R, Lantin RS, Alberto MCR, Aduna JB, Javellana AM (1996). Factors affecting methane emission from rice fields.Atmospheric Environment, 30, 1751-1754.
DOI URL |
[69] |
Nouchi I, Hosono T, Aoki K, Minami K (1994). Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling.Plant and Soil, 161, 195-208.
DOI URL |
[70] | Nouchi I, Mariko S (1993). Mechanism of methane transport by rice plants. In: Oremland RS ed. Biogeochemistry of Global Change. Springer, New York. 336-352. |
[71] |
Nouchi I, Mariko S, Aoki K (1990). Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants.Plant Physiology, 94, 59-66.
DOI URL PMID |
[72] |
Petruzzella A, Guariento RD, Gripp AdR, Marinho CC, Figueiredo-Barros MP, Esteves FdA (2015). Herbivore damage increases methane emission from emergent aquatic macrophytes.Aquatic Botany, 127, 6-11.
DOI URL |
[73] |
Reid MC, Pal DS, Jaffé PR (2015). Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests.Water Resources Research, 51, 7343-7357.
DOI URL |
[74] | Schimel JP (1995). Plant transport and methane production as controls on methane flux from arctic wet meadow tundra.Biogeochemistry, 28, 183-200. |
[75] |
Schuette JL, Klug MJ, Klomparens KL (1994). Influence of stem lacunar structure on gas transport: Relation to the oxygen transport potential of submersed vascular plants.Plant, Cell & Environment, 17, 355-365.
DOI URL |
[76] |
Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989a). A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy.Journal of Geophysical Research: Atmospheres, 94, 16405-16416.
DOI URL |
[77] |
Schütz H, Seiler W, Conrad R (1989b). Processes involved in formation and emission of methane in rice paddies.Biogeochemistry, 7, 33-53.
DOI URL |
[78] |
Sebacher DI, Harriss RC, Bartlett KB (1985). Methane emissions to the atmosphere through aquatic plants.Journal of Environmental Quality, 14, 40-46.
DOI URL |
[79] |
Seiler W, Holzapfel-Pschorn A, Conrad R, Scharffe D (1984). Methane emission from rice paddies.Journal of Atmospheric Chemistry, 1, 241-268.
DOI URL |
[80] |
Singh S, Kashyap AK, Singh JS (1998). Methane flux in relation to growth and phenology of a high yielding rice variety as affected by fertilization.Plant and Soil, 201, 157-164.
DOI URL |
[81] | Sorrell BK, Boon PI (1994). Convective gas flow in Eleocharis sphacelata R. Br.: Methane transport and release from wetlands. Aquatic Botany, 47, 197-212. |
[82] | Sorrell BK, Brix H, Orr PT (1997). Eleocharis sphacelata: Internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytologist, 136, 433-442. |
[83] | Tong C, Zeng CS, Wang WQ, Yan ZP, Yang HY (2009). Main factors influencing CH4 flux from a Phragmites australis wetland in the Min River estuary. Acta Scientiae Circumstantiae, 29, 207-216. (in Chinese with English abstract)[仝川, 曾从盛, 王维奇, 闫宗平, 杨红玉 (2009). 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 29, 207-216.] |
[84] | Tornbjerg T, Bendix M, Brix H (1994). Internal gas transport in Typha latifolia L. and Typha angustifolia L. 2. Convective throughflow pathways and ecological significance. Aquatic Botany, 49, 91-105. |
[85] | van der Nat FFWA, Middelburg JJ, van Meteren D, Wielemakers A (1998). Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry, 41, 1-22. |
[86] |
van der Nat FJ, Middelburg JJ (2000). Methane emission from tidal freshwater marshes.Biogeochemistry, 49, 103-121.
DOI URL |
[87] |
Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000). Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma.Plant, Cell & Environment, 23, 1237-1245.
DOI URL |
[88] |
Wang B, Neue HU, Samonte HP (1997). Role of rice in mediating methane emission. Plant and Soil, 189, 107-115.
DOI URL |
[89] | Wang MX, Li J, Zheng XH (1998). Methane emission and mechanisms of methane production, oxidation, transportation in the rice fields.Chinese Journal of Atmospheric Sciences, 22, 600-612. (in Chinese with English abstract)[王明星, 李晶, 郑循华 (1998). 稻田甲烷排放及产生、转化、输送机理. 大气科学, 22, 600-612.] |
[90] |
Wang SC, Liu KX, You ZL, Liao ZW (1998). Effects of Fe and Mn in paddy soils derived from different parent materials on methane emission.Journal of Ecology and Rural Environment, 14, 52-54. (in Chinese with English abstract)[王胜春, 刘可星, 游植麟, 廖宗文 (1998). 不同母质发育的水稻土中铁、锰对甲烷排放的影响. 生态与农村环境学报, 14, 52-54.]
DOI URL |
[91] |
Wassmann R, Aulakh MS (2000). The role of rice plants in regulating mechanisms of methane emissions.Biology and Fertility of Soils, 31, 20-29.
DOI URL |
[92] |
Whiting GJ, Chanton JP (1992). Plant-dependent CH4 emission in a subarctic Canadian fen.Global Biogeochemical Cycles, 6, 225-231.
DOI URL |
[93] |
Whiting GJ, Chanton JP (1996). Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms.Aquatic Botany, 54, 237-253.
DOI URL |
[94] |
Yang P, Tong C (2015). Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems: A review.Acta Ecologica Sinica, 35, 6868-6880.(in Chinese with English abstract) [杨平, 仝川 (2015). 淡水挺水生态系统温室气体排放的主要途径及影响因素研究进展. 生态学报, 35, 6868-6880.]
DOI URL |
[95] | Yang SJ, Wang M, Li LF, Shao XM (). Plant Biology. Science Press, Beijing. 104-139. (in Chinese)[杨世杰, 汪矛, 李连芳, 邵小明 (2000). 植物生物学. 科学出版社, 北京. 104-139.] |
[96] |
Yavitt JB, Knapp AK (1998). Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. New Phytologist, 139, 495-503.
DOI URL |
[97] |
Yu KW, Wang ZP, Chen GX (1997). Nitrous oxide and methane transport through rice plants.Biology and Fertility of Soils, 24, 341-343.
DOI URL |
[98] |
Yue JM, Ren Q, Zhang JC (2015). Advances in research on the mechanism of salinity tolerance in plant.China Forestry Science and Technology, 29, 9-13. (in Chinese with English abstract)[岳健敏, 任琼, 张金池 (2015). 植物盐耐机理研究进展. 林业科技开发, 29, 9-13.]
DOI URL |
[99] |
Zhang CB, Sun HY, Ge Y, Gu BJ, Wang H, Chang J (2012). Plant species richness enhanced the methane emission in experimental microcosms.Atmospheric Environment, 62, 180-183.
DOI URL |
[100] | Zhang L, Song C (2016). Effects of nitrogen on methane production and oxidation and dissolved organic carbon in a freshwater marsh.Environmental Engineering & Management Journal, 15, 1813-1822. |
[101] |
Zhang XY, Ma J, Li XP, Xu H, Cai ZC (2012). Reviews on methane transport in rice paddy field.Soil, 44, 181-187. (in Chinese with English abstract)[张晓艳, 马静, 李小平, 徐华, 蔡祖聪 (2012). 稻田甲烷传输的研究进展. 土壤, 44, 181-187.]
DOI URL |
[102] |
Zhao ZY, Chang J, Han WJ, Wang M, Ma DP, Du YY, Qu ZL (2016). Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands.Ecological Engineering, 95, 390-398.
DOI URL |
[1] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[2] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[3] | 姜艳, 陈兴芳, 杨旭杰. 基于Landsat影像的武汉东湖30年来水生植物动态变化[J]. 植物生态学报, 2022, 46(12): 1551-1561. |
[4] | 欧文慧, 刘亚恒, 李娜, 徐芷妍, 彭秋桐, 杨予静, 李中强. 柴达木盆地水生植物多样性格局及多假说验证[J]. 植物生态学报, 2021, 45(11): 1213-1220. |
[5] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[6] | 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉. 通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 305-317. |
[7] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[8] | 汪洋, 苗琳琳, 于丹, 刘春花, 王忠. 青藏高原3种生活型水生植物的热值及环境的影响[J]. 植物生态学报, 2017, 41(2): 209-218. |
[9] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
[10] | 刘伟, 王继明, 王智平. 内蒙古典型草原植物功能型对土壤甲烷吸收的影响[J]. 植物生态学报, 2011, 35(3): 275-283. |
[11] | 李海防, 夏汉平, 傅声雷, 张杏锋. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响[J]. 植物生态学报, 2009, 33(6): 1015-1022. |
[12] | 牟长城, 石兰英, 孙晓新. 小兴安岭典型草丛沼泽湿地CO2、CH4和N2O的排放动态及其影响因素[J]. 植物生态学报, 2009, 33(3): 617-623. |
[13] | 刘玲玲, 刘允芬, 温学发, 王迎红. 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量[J]. 植物生态学报, 2008, 32(2): 431-439. |
[14] | 陈婷, 曾波, 罗芳丽, 叶小齐, 刘巅. 外源乙烯和α-萘乙酸对三峡库区岸生植物野古草和秋华柳茎通气组织形成的影响[J]. 植物生态学报, 2007, 31(5): 919-922. |
[15] | 陈开宁, 强胜, 李文朝, 吴庆龙, 胡耀辉. 蓖齿眼子菜繁殖多样性研究[J]. 植物生态学报, 2003, 27(5): 672-676. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 6088
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2004
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La