植物生态学报 ›› 2019, Vol. 43 ›› Issue (2): 165-173.DOI: 10.17521/cjpe.2018.0267
所属专题: 生态系统碳水能量通量; 微生物生态学
曹登超1,2,3,4,高霄鹏1,2,3,*(),李磊1,2,3,桂东伟1,2,3,曾凡江1,2,3,匡文浓1,2,3,4,尹明远1,2,3,4,李言言1,2,3,4,艾力•甫拉提5
收稿日期:
2018-10-30
接受日期:
2019-02-01
出版日期:
2019-02-20
发布日期:
2019-06-04
通讯作者:
高霄鹏
基金资助:
CAO Deng-Chao1,2,3,4,GAO Xiao-Peng1,2,3,*(),LI Lei1,2,3,GUI Dong-Wei1,2,3,ZENG Fan-Jiang1,2,3,KUANG Wen-Nong1,2,3,4,YIN Ming-Yuan1,2,3,4,LI Yan-Yan1,2,3,4,Aili PULATI5
Received:
2018-10-30
Accepted:
2019-02-01
Online:
2019-02-20
Published:
2019-06-04
Contact:
GAO Xiao-Peng
Supported by:
摘要:
氮(N)、磷(P)等养分添加是提高草地生态系统生产力的重要策略, 但其对土壤氧化亚氮(N2O)排放的影响尚不明确。该研究以南疆昆仑山北坡高山草地为研究对象, 设置氮添加、磷添加、氮磷交互以及不施肥(CK) 4个处理, 采用静态箱-气象色谱法连续监测2017年生长季草地的N2O排放, 研究不同氮、磷添加处理下的N2O排放特征, 并利用Pearson相关分析对影响N2O排放的主要环境因子进行定性识别及定量解析。结果表明: 氮添加处理与氮磷交互处理在施肥后约3周引起显著的N2O排放峰, 分别为42.3和15.4 g N·hm -2·d -1。与其他处理相比, 氮添加处理生长季N2O排放通量显著增加了1.8-3.2倍, 而磷添加以及氮磷交互处理与CK之间没有显著差异。Pearson相关分析结果表明: N2O排放与微生物生物量碳呈负相关关系, 与溶解性有机碳含量、pH值呈正相关关系, 而与其他环境因子关系不显著。以上结果表明, 与单施氮肥相比, 在该地区草场采用氮磷混施可显著减少N2O的排放。
曹登超, 高霄鹏, 李磊, 桂东伟, 曾凡江, 匡文浓, 尹明远, 李言言, 艾力•甫拉提. 氮磷添加对昆仑山北坡高山草地N2O排放的影响. 植物生态学报, 2019, 43(2): 165-173. DOI: 10.17521/cjpe.2018.0267
CAO Deng-Chao, GAO Xiao-Peng, LI Lei, GUI Dong-Wei, ZENG Fan-Jiang, KUANG Wen-Nong, YIN Ming-Yuan, LI Yan-Yan, Aili PULATI. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China. Chinese Journal of Plant Ecology, 2019, 43(2): 165-173. DOI: 10.17521/cjpe.2018.0267
图1 试验期间降水量、20 cm深度土壤孔隙含水率(WFPS)、日平均气温(Ta)和20 cm深度土壤温度(Ts)的变化。
Fig. 1 Daily precipitation, soil water-filled pore space (WFPS) at 20 cm depth, daily air temperature (Ta) and soil temperature (Ts) at 20 cm depth during the experimental period.
图2 不同氮磷添加处理下草地土壤N2O排放速率的动态变化(平均值±标准误差)。箭头表示氮磷添加日期。*表示处理间存在显著差异(p < 0.05)。CK, 对照; N, 氮添加; N + P, 氮磷混施; P, 磷添加。
Fig. 2 Dynamic variation of daily N2O flux rate from grassland soil under different nitrogen and phosphorus addition treatments (mean ± SE). Arrow indicates date of nitrogen and phosphorus addition treatments. * indicates significant differences between treatments (p < 0.05). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
处理 Treatment | N2O排放通量 N2O emission (kg N·hm-2) | p |
---|---|---|
对照 CK | 0.50 ± 0.05B | |
氮添加 nitrogen addition | 1.45 ± 0.06A | 0.002 |
磷添加 phosphorus addition | 0.35 ± 0.02B | 0.025 |
氮磷混施 nitrogen + phosphorus addition | 0.52 ± 0.05B | 0.226 |
表1 不同氮磷添加处理下昆仑山北坡高山草地土壤N2O累积排放量(平均值±标准误差)
Table 1 Cumulative N2O emissions of grassland soil under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains, China (mean ± SE)
处理 Treatment | N2O排放通量 N2O emission (kg N·hm-2) | p |
---|---|---|
对照 CK | 0.50 ± 0.05B | |
氮添加 nitrogen addition | 1.45 ± 0.06A | 0.002 |
磷添加 phosphorus addition | 0.35 ± 0.02B | 0.025 |
氮磷混施 nitrogen + phosphorus addition | 0.52 ± 0.05B | 0.226 |
图3 不同氮磷添加处理下昆仑山北坡高山草地土壤溶解性有机碳含量和pH的动态变化(平均值±标准误差)。*表示处理间存在显著差异(p < 0.05)。CK, 对照; N, 氮添加; N + P, 氮磷混施; P, 磷添加。
Fig. 3 Dynamic variation of soil dissolved organic carbon (DOC) content and pH under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains (mean ± SE). * indicates significant difference between treatments (p < 0.05). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
图4 不同氮磷添加处理下昆仑山北坡高山草地土壤NH4+-N、NO3--N和速效P含量的动态变化(平均值±标准误差)。 *表示处理间存在显著差异(p < 0.05)。CK, 对照; N, 氮添加; N + P, 氮磷混施; P, 磷添加。
Fig. 4 Dynamic variation of soil NH4+-N, NO3--N and available P content under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains (mean ± SE). * indicates significant difference between treatments (p < 0.05). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
图5 不同氮磷添加处理下昆仑山北坡高山草地土壤微生物生物量氮(MBN)和微生物生物量碳(MBC)含量的动态变化(平均值±标准误差)。CK, 对照; N, 氮添加; N+P, 氮磷混施; P, 磷添加。
Fig. 5 Dynamic variation of soil microbial biomass nitrogen (MBN) and carbon (MBC) content under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains, China(mean ± SE). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
处理 Treatment | 地上部生物量 Above-ground biomass (g·m-2) | p |
---|---|---|
对照 CK | 192.78 ± 27.03A | |
氮添加 nitrogen addition | 192.13 ± 34.07A | 0.96 |
磷添加 phosphorus addition | 176.02 ± 30.45A | 0.62 |
氮磷交互 nitrogen + phosphorus addition | 178.57 ± 28.38A | 0.96 |
表2 不同氮磷添加处理下昆仑山北坡高山草地的植物地上部生物量(平均值±标准误差)
Table 2 Plant above-ground biomass under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains (mean ± SE)
处理 Treatment | 地上部生物量 Above-ground biomass (g·m-2) | p |
---|---|---|
对照 CK | 192.78 ± 27.03A | |
氮添加 nitrogen addition | 192.13 ± 34.07A | 0.96 |
磷添加 phosphorus addition | 176.02 ± 30.45A | 0.62 |
氮磷交互 nitrogen + phosphorus addition | 178.57 ± 28.38A | 0.96 |
硝态氮 NO3--N | 铵态氮 NH4+-N | 速效磷 AP | pH | 可溶性有机碳 DOC | 微生物生物量碳 MBC | 微生物生 物量氮 MBN | 土壤孔隙含水率 WFPS | 气温 Air temperature | 土壤温度 Soil temperature |
---|---|---|---|---|---|---|---|---|---|
-0.17 | -0.08 | -0.11 | 0.53** | 0.67** | -0.30* | -0.17 | -0.16 | -0.19 | 0.05 |
表3 昆仑山北坡高山草地N2O排放与环境变量的相关性和决定系数
Table 3 Correlation coefficients of daily N2O flux rate with environmental variables in alpine grassland in the northern slope of Kunlun Mountains
硝态氮 NO3--N | 铵态氮 NH4+-N | 速效磷 AP | pH | 可溶性有机碳 DOC | 微生物生物量碳 MBC | 微生物生 物量氮 MBN | 土壤孔隙含水率 WFPS | 气温 Air temperature | 土壤温度 Soil temperature |
---|---|---|---|---|---|---|---|---|---|
-0.17 | -0.08 | -0.11 | 0.53** | 0.67** | -0.30* | -0.17 | -0.16 | -0.19 | 0.05 |
[1] | Baral BR, Kuyper TW, van Groenigen JW ( 2013). Liebig’s law of the minimum applied to a greenhouse gas: Alleviation of P-limitation reduces soil N2O emission. Plant and Soil, 374, 539-548. |
[2] | Bouwman AF, Boumans LJM, Batjes NH ( 2002). Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16, 1080. DOI: 10.1029/2001GB001812. |
[3] | Du R, Zhou YG, Wang GC, Lü DR, Wan XW ( 2003). The effect of soil water on grassland N2O releasing process in typical temperate zones. Nature Science Advance , 13, 939-945. |
[ 杜睿, 周宇光, 王庚辰, 吕达仁, 万小伟 ( 2003). 土壤水分对温带典型草地N2O排放过程的影响. 自然科学进展, 13, 939-945.] | |
[4] |
Goulden ML, McMillan AM, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP ( 2011). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17, 855-871.
DOI URL |
[5] | Granli T, Bockman OC ( 1994). Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences, 12, 7-128. |
[6] | Huang SH, Jiang WW, Lü J, Cao JM ( 2005). Influence of nitrogen and phosphorus fertilizers on N2O emissions in rice fields. China Environmental Science , 25, 540-543. |
[ 黄树辉, 蒋文伟, 吕军, 曹建明 ( 2005). 氮肥和磷肥对稻田N2O排放的影响. 中国环境科学, 25, 540-543.] | |
[7] | IPCC (Intergovernmental Panel on Climate Change) ( 2007). Climate Change 2007: The Physical Science Basis. Cambridge University Press, New York, USA. |
[8] |
Kuang WN, Gao XP, Gui DW, Tenuta M, Flaten DN, Yin MY, Zeng FJ ( 2018). Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crops Research, 229, 17-26.
DOI URL |
[9] |
Li C, Frolking S, Frolking TA ( 1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 97, 9759-9776.
DOI URL |
[10] |
Linn DM, Doran JW ( 1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267-1272.
DOI URL |
[11] | Liu YT, Li YE, Wan YF, Gao QZ, Qin XB, Chen DL ( 2011). Nitrous Oxide emissions from spring-maize field under the application of different nitrogen and phosphorus fertilizers. Journal of Agro-Environment Science , 30, 1468-1475. |
[ 刘运通, 李玉娥, 万运帆, 高清竹, 秦晓波, 陈德立 ( 2011). 不同氮磷肥施用对春玉米农田N2O排放的影响. 农业环境科学学报, 30, 1468-1475.] | |
[12] |
Mehnaz KR, Dijkstra FA ( 2016). Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma, 284, 34-41.
DOI URL |
[13] |
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J ( 2014). Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring. Biology and Fertility of Soils, 50, 45-51.
DOI URL |
[14] | Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A ( 2010). Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Science and Plant Nutrition, 56, 782-788. |
[15] | Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A ( 2013). Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. Biology and Fertility of Soils, 49, 13-21. |
[16] |
Mori T, Wachrinrat C, Staporn D, Meunpong P, Suebsai W, Matsubara K, Boonsri K, Lumban W, Kuawong M, Phukdee T, Srifai J, Boonman K ( 2017). Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand. Agriculture and Natural Resources, 51, 91-95.
DOI URL |
[17] | Pedersen AR ( 2011). HMR: Flux Estimation with Static Chamber Data. . Cited: 2012-04-10. |
[18] |
Ravishankara AR, Portmann RW ( 2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century. Science, 326, 123-125.
DOI URL |
[19] |
Tenuta M, Mkhabela M, Tremorin D, Coppi L, Phipps G, Flaten D, Ominski K ( 2010). Nitrous oxide and methane emission from a coarse-texture grassland soil receiving hog slurry. Agriculture, Ecosystems and Environment, 138, 35-43.
DOI URL |
[20] | Ussiri D, Lal R ( 2013). Soil Emission of Nitrous Oxide and Its Mitigation. Springer, Dordrecht, the Netherlands. 63-97. |
[21] | Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[22] |
Wang C, Zhu F, Zhao X, Dong K ( 2014 a). The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of Loess Plateau of Northern China. Geoderma, 213, 419-425.
DOI URL |
[23] | Wang DX, Gao YH, Wang P, Zeng XY ( 2016). Responses of CO2 and N2O emissions to carbon and phosphorus additions in two contrasting alpine meadow soils on the Qinghai-Tibetan Plateau. Fresenius Environmental Bulletin, 25, 4401-4408. |
[24] |
Wang F, Shi G, Nicholas O, Yao B, Ji M, Wang W, Ma Z, Zhou H, Zhao X ( 2018). Ecosystem nitrogen retention is regulated by plant community trait interactions with nutrient status in an alpine meadow. Journal of Ecology, 106, 1570-1581.
DOI URL |
[25] | Wang FM, Li J, Wang XL, Zhang W, Zou B, Neher DA, Li Z ( 2014 b). Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615. DOI: 10.1038/srep05615. |
[26] | Wang GQ, LI F, Peng YF, Chen YL, Han TF, Yang GB, Liu L, Zhou GY, Yang YH ( 2018). Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe. Chinese Journal of Plant Ecology , 42, 105-115. |
[ 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合 ( 2018). 土壤含水量调控高寒草原生态系统N2O排放对增温的响应. 植物生态学报, 42, 105-115.] | |
[27] | Wang GS ( 2013). Effect of Nutrition Addition, Altered Precipitation and Temperature Regimes on Greenhouse Gas Emissions in an Alpine Grassland on the Tibetan Plateau. Master degree dissertation, Northwest Plateau Institute of biology, Chinese Academy of Sciences, Xining. 20-21. |
[ 王广帅 ( 2013). 养分、水热调控对青藏高原高寒草地温室气体排放的影响. 硕士学位论文, 中国科学院西北高原生物所, 西宁. 20-21.] | |
[28] | Wei D, Xu R, Wang YH, Yao TD ( 2011). CH4 , N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co region of Tibetan Plateau. Acta Agrestia Sinica , 19, 412-419. |
[ 魏达, 旭日, 王迎红, 姚檀栋 ( 2011). 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究. 草地学报, 19, 412-419.] | |
[29] |
Yan YL, Ganjurjav H, Hu GZ, Liang Y, Li Y, He SC, Danjiu LB, Yang J, Gao QZ ( 2018). Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau. Agriculture Ecosystems and Environment, 265, 45-53.
DOI URL |
[30] | Yang HY, Zhang T, Huang Y, Duan L ( 2016). Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environmental Science, 37, 1900-1907. |
[ 杨涵越, 张婷, 黄永梅, 段雷 ( 2016). 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 37, 1900-1907.] | |
[31] |
Zhang LH, Huo YW, Guo DF, Wang QB, Bao Y, Li LH ( 2014). Effects of multi-nutrient additions on GHG fluxes in a temperate grassland of Northern China. Ecosystems, 17, 657-672.
DOI URL |
[32] |
Zhao Y, Yang B, Li M, Xiao R, Rao K, Wang J, Zhang T, Guo J ( 2019). Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow. Science of the Total Environment, 654, 863-871.
DOI URL |
[1] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[2] | 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应[J]. 植物生态学报, 2018, 42(1): 105-115. |
[3] | 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(5): 480-492. |
[4] | 詹书侠, 郑淑霞, 王扬, 白永飞. 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联[J]. 植物生态学报, 2016, 40(1): 36-47. |
[5] | 王谢,向成华,李贤伟,文冬菊. 冬季火对川西亚高山草地土壤微生物功能多样性及其强度的短期影响[J]. 植物生态学报, 2014, 38(5): 468-476. |
[6] | 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞. 典型草原建群种羊草对氮磷添加的生理生态响应[J]. 植物生态学报, 2014, 38(2): 103-115. |
[7] | 王谢,向成华,李贤伟,文冬菊. 冬季火如何影响川西亚高山草地植物群落?[J]. 植物生态学报, 2014, 38(11): 1194-1204. |
[8] | 王谢,向成华,李贤伟,文冬菊. 冬季火对川西亚高山草地植物群落结构和牧草质量的影响[J]. 植物生态学报, 2013, 37(10): 922-932. |
[9] | 郭柯, 郑度. 西昆仑、西喀喇昆仑和西北喜马拉雅地区植被的地域分异及其指示意义[J]. 植物生态学报, 2002, 26(1): 17-22. |
[10] | 郭柯, 郑度, 李渤生. 喀喇昆仑山-昆仑山地区植物的生活型组成[J]. 植物生态学报, 1998, 22(1): 51-59. |
[11] | 郭柯, 李渤生, 郑度. 喀喇昆仑山-昆仑山地区植物区系组成和分布规律的研究[J]. 植物生态学报, 1997, 21(2): 105-114. |
[12] | 孔令韶, 李渤生, 郭柯, 马茂华. 喀喇昆仑、昆仑山地区植物中一些元素的自然含量特征[J]. 植物生态学报, 1995, 19(1): 13-22. |
[13] | 胡自治, 孙吉雄, 李洋, 龙瑞军, 杨发林. 甘肃天祝主要高山草地的生物量及光能转化率[J]. 植物生态学报, 1994, 18(2): 121-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19