植物生态学报 ›› 2014, Vol. 38 ›› Issue (5): 468-476.DOI: 10.3724/SP.J.1258.2014.00043
所属专题: 生物多样性
收稿日期:
2014-03-13
接受日期:
2014-04-10
出版日期:
2014-03-13
发布日期:
2014-05-13
通讯作者:
李贤伟
基金资助:
WANG Xie1,XIANG Cheng-Hua1,2,LI Xian-Wei1,*(),WEN Dong-Ju1
Received:
2014-03-13
Accepted:
2014-04-10
Online:
2014-03-13
Published:
2014-05-13
Contact:
LI Xian-Wei
摘要:
为可持续管理川西亚高山草地生态系统, 全面地了解火后土壤微生物功能的多样性和强度的变化及其恢复状况, 基于2010年“12·5”冬草场的火烧事件, 以川西亚高山草地为研究对象, 对比了火烧和未火烧区域0-20 cm土层土壤中7种酶(β-葡糖苷酶、酸性磷酸酶、碱性磷酸酶、脲酶、蔗糖酶、蛋白酶和过氧化氢酶)的活性变化, 分析了土壤微生物功能多样性及其强度对火处理的响应。结果发现, 7种酶的潜在活性在0-5 cm土层中皆有所增加, 但对火处理、土层深度和两者交互作用的响应有所差异; 其中, 碱性磷酸酶在指示该区域火后微生物功能多样性和强度短期内的变化时具有较好的灵敏性和指示性。火在一定程度上促进了表土层微生物功能的发挥, 但是土壤微生物功能多样性及其强度对火和土层深度(0-20 cm)的响应并不显著。因此, 为能更好地揭示干扰行为对微生物生物多样性的影响机制, 未来应加强土壤微生物群落功能稳定性的研究。
王谢,向成华,李贤伟,文冬菊. 冬季火对川西亚高山草地土壤微生物功能多样性及其强度的短期影响. 植物生态学报, 2014, 38(5): 468-476. DOI: 10.3724/SP.J.1258.2014.00043
WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 2014, 38(5): 468-476. DOI: 10.3724/SP.J.1258.2014.00043
类型编号 Type ID | 处理 Treatment | 坡位 Slope position | 坡向 Slope aspect | 海拔 (m) Elevation | 容重 (g·cm-3)1) Bulk density | 含水量(%)1) Water content | 酸碱度2) pH |
---|---|---|---|---|---|---|---|
B1 | 火烧 Burned | 上 Upper | 东 East | 3 429 | 0.992 | 22.3 | 6.60 |
B2 | 火烧 Burned | 中 Middle | 东 East | 3 454 | 1.055 | 15.1 | 7.28 |
B3 | 火烧 Burned | 下 Lower | 东 East | 3 461 | 1.051 | 15.4 | 7.54 |
B4 | 火烧 Burned | 上 Upper | 西 West | 3 315 | 0.932 | 26.6 | 6.30 |
B5 | 火烧 Burned | 中 Middle | 西 West | 3 243 | 1.058 | 15.6 | 6.71 |
B6 | 火烧 Burned | 下 Lower | 西 West | 3 487 | 0.946 | 16.7 | 7.24 |
U1 | 未火烧 Unburned | 上 Upper | 东 East | 3 409 | 0.993 | 23.4 | 6.44 |
U2 | 未火烧 Unburned | 中 Middle | 东 East | 3 334 | 1.043 | 22.2 | 7.04 |
U3 | 未火烧 Unburned | 下 Lower | 东 East | 3 444 | 0.987 | 19.3 | 7.47 |
U4 | 未火烧 Unburned | 上 Upper | 西 West | 3 424 | 0.929 | 32.4 | 6.36 |
U5 | 未火烧 Unburned | 中 Middle | 西 West | 3 196 | 1.068 | 17.0 | 6.63 |
U6 | 未火烧 Unburned | 下 Lower | 西 West | 3 484 | 1.079 | 18.5 | 7.15 |
表1 样地基本情况
Table 1 General information of sampling plots
类型编号 Type ID | 处理 Treatment | 坡位 Slope position | 坡向 Slope aspect | 海拔 (m) Elevation | 容重 (g·cm-3)1) Bulk density | 含水量(%)1) Water content | 酸碱度2) pH |
---|---|---|---|---|---|---|---|
B1 | 火烧 Burned | 上 Upper | 东 East | 3 429 | 0.992 | 22.3 | 6.60 |
B2 | 火烧 Burned | 中 Middle | 东 East | 3 454 | 1.055 | 15.1 | 7.28 |
B3 | 火烧 Burned | 下 Lower | 东 East | 3 461 | 1.051 | 15.4 | 7.54 |
B4 | 火烧 Burned | 上 Upper | 西 West | 3 315 | 0.932 | 26.6 | 6.30 |
B5 | 火烧 Burned | 中 Middle | 西 West | 3 243 | 1.058 | 15.6 | 6.71 |
B6 | 火烧 Burned | 下 Lower | 西 West | 3 487 | 0.946 | 16.7 | 7.24 |
U1 | 未火烧 Unburned | 上 Upper | 东 East | 3 409 | 0.993 | 23.4 | 6.44 |
U2 | 未火烧 Unburned | 中 Middle | 东 East | 3 334 | 1.043 | 22.2 | 7.04 |
U3 | 未火烧 Unburned | 下 Lower | 东 East | 3 444 | 0.987 | 19.3 | 7.47 |
U4 | 未火烧 Unburned | 上 Upper | 西 West | 3 424 | 0.929 | 32.4 | 6.36 |
U5 | 未火烧 Unburned | 中 Middle | 西 West | 3 196 | 1.068 | 17.0 | 6.63 |
U6 | 未火烧 Unburned | 下 Lower | 西 West | 3 484 | 1.079 | 18.5 | 7.15 |
0-5 cm土层 0-5 cm soil layer | 5-10 cm土层 5-10 cm soil layer | 10-20 cm土层 10-20 cm soil layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | |||||
β-葡糖苷酶活性 β-glucosidase activity | 9.12 ± 1.94a | 7.24 ± 2.46b | 4.89 ± 1.19c | 3.81 ± 1.54cd | 2.80 ± 1.20d | 3.16 ± 1.03d | ||||
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85a | 13.26 ± 3.81b | 10.93 ± 5.03bc | 10.65 ± 4.52bc | 6.78 ± 2.01d | 8.12 ± 2.98cd | ||||
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45a | 7.55 ± 3.53b | 6.47 ± 2.12bc | 6.26 ± 3.28bc | 5.20 ± 1.91c | 4.95 ± 2.40c | ||||
脲酶活性 Urease activity | 0.30 ± 0.15a | 0.20 ± 0.09b | 0.17 ± 0.04bc | 0.16 ± 0.09bc | 0.14 ± 0.09bc | 0.11 ± 0.10c | ||||
蔗糖酶活性 Invertase activity | 60.39 ± 16.07a | 50.66 ± 7.53b | 40.77 ± 7.48c | 39.91 ± 7.08c | 30.51 ± 7.76d | 29.83 ± 9.21d | ||||
蛋白酶活性 Proteinase activity | 1.08 ± 0.28a | 0.96 ± 0.24ab | 0.93 ± 0.19bc | 0.81 ± 0.18c | 0.63 ± 0.21d | 0.56 ± 0.05d | ||||
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11a | 1.28 ± 0.10b | 1.14 ± 0.09c | 1.10 ± 0.09c | 1.01 ± 0.07d | 0.92 ± 0.05e | ||||
微生物功能强度 Microbial functional intensity | 1.26 ± 0.60a | 1.21 ± 0.39a | 1.49 ± 0.49a | 1.22 ± 0.49a | 1.31 ± 0.59a | 1.36 ± 0.40a | ||||
微生物功能多样性 Microbial functional diversity | 1.18 ± 0.58a | 1.14 ± 0.06ab | 1.14 ± 0.83ab | 1.10 ± 0.07b | 1.10 ± 0.07b | 1.13 ± 0.11ab |
表2 火烧区域与未火烧区域土壤酶活性(平均值±标准偏差)
Table 2 Activities of soil enzymes on burned and unburned sites (mean ± SD)
0-5 cm土层 0-5 cm soil layer | 5-10 cm土层 5-10 cm soil layer | 10-20 cm土层 10-20 cm soil layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | |||||
β-葡糖苷酶活性 β-glucosidase activity | 9.12 ± 1.94a | 7.24 ± 2.46b | 4.89 ± 1.19c | 3.81 ± 1.54cd | 2.80 ± 1.20d | 3.16 ± 1.03d | ||||
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85a | 13.26 ± 3.81b | 10.93 ± 5.03bc | 10.65 ± 4.52bc | 6.78 ± 2.01d | 8.12 ± 2.98cd | ||||
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45a | 7.55 ± 3.53b | 6.47 ± 2.12bc | 6.26 ± 3.28bc | 5.20 ± 1.91c | 4.95 ± 2.40c | ||||
脲酶活性 Urease activity | 0.30 ± 0.15a | 0.20 ± 0.09b | 0.17 ± 0.04bc | 0.16 ± 0.09bc | 0.14 ± 0.09bc | 0.11 ± 0.10c | ||||
蔗糖酶活性 Invertase activity | 60.39 ± 16.07a | 50.66 ± 7.53b | 40.77 ± 7.48c | 39.91 ± 7.08c | 30.51 ± 7.76d | 29.83 ± 9.21d | ||||
蛋白酶活性 Proteinase activity | 1.08 ± 0.28a | 0.96 ± 0.24ab | 0.93 ± 0.19bc | 0.81 ± 0.18c | 0.63 ± 0.21d | 0.56 ± 0.05d | ||||
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11a | 1.28 ± 0.10b | 1.14 ± 0.09c | 1.10 ± 0.09c | 1.01 ± 0.07d | 0.92 ± 0.05e | ||||
微生物功能强度 Microbial functional intensity | 1.26 ± 0.60a | 1.21 ± 0.39a | 1.49 ± 0.49a | 1.22 ± 0.49a | 1.31 ± 0.59a | 1.36 ± 0.40a | ||||
微生物功能多样性 Microbial functional diversity | 1.18 ± 0.58a | 1.14 ± 0.06ab | 1.14 ± 0.83ab | 1.10 ± 0.07b | 1.10 ± 0.07b | 1.13 ± 0.11ab |
β-葡糖苷酶 活性 β-glucosidase activity | 酸性磷 酸酶活性 Acid phosphatase activity | 碱性磷酸酶 活性 Alkaline phosphatase activities | 脲酶活性 Urease activity | 蔗糖酶活性 Invertase activity | 蛋白酶 活性 Proteinase activity | 过氧化氢 酶活性 Catalase activity | 微生物 功能强度 Microbial functional intensity | |
---|---|---|---|---|---|---|---|---|
酸性磷酸酶活性 Acid phosphatase activity | 0.536** | |||||||
碱性磷酸酶活性 Alkaline phosphatase activities | 0.579** | 0.280** | ||||||
脲酶活性 Urease activity | 0.296** | 0.361** | 0.235* | |||||
蔗糖酶活性 Invertase activity | 0.765** | 0.815** | 0.528** | 0.415** | ||||
蛋白酶活性 Proteinase activity | 0.533** | 0.465** | 0.619** | 0.146ns | 0.621** | |||
过氧化氢酶活性 Catalase activity | 0.682** | 0.684** | 0.543** | 0.238* | 0.766** | 0.643** | ||
微生物功能强度 Microbial functional intensity | 0.055ns | -0.434** | 0.495** | 0.017ns | -0.259** | 0.169ns | -0.148ns | |
微生物功能多样性 Microbial functional diversity | 0.236* | -0.009ns | 0.499** | 0.104ns | -0.149 ns | 0.227* | 0.158ns | 0.592** |
表3 7种土壤酶活性与土壤微生物功能多样性及强度之间的相关性
Table 3 Correlations among the specific soil enzyme activities and the diversity and intensity of soil microbial function
β-葡糖苷酶 活性 β-glucosidase activity | 酸性磷 酸酶活性 Acid phosphatase activity | 碱性磷酸酶 活性 Alkaline phosphatase activities | 脲酶活性 Urease activity | 蔗糖酶活性 Invertase activity | 蛋白酶 活性 Proteinase activity | 过氧化氢 酶活性 Catalase activity | 微生物 功能强度 Microbial functional intensity | |
---|---|---|---|---|---|---|---|---|
酸性磷酸酶活性 Acid phosphatase activity | 0.536** | |||||||
碱性磷酸酶活性 Alkaline phosphatase activities | 0.579** | 0.280** | ||||||
脲酶活性 Urease activity | 0.296** | 0.361** | 0.235* | |||||
蔗糖酶活性 Invertase activity | 0.765** | 0.815** | 0.528** | 0.415** | ||||
蛋白酶活性 Proteinase activity | 0.533** | 0.465** | 0.619** | 0.146ns | 0.621** | |||
过氧化氢酶活性 Catalase activity | 0.682** | 0.684** | 0.543** | 0.238* | 0.766** | 0.643** | ||
微生物功能强度 Microbial functional intensity | 0.055ns | -0.434** | 0.495** | 0.017ns | -0.259** | 0.169ns | -0.148ns | |
微生物功能多样性 Microbial functional diversity | 0.236* | -0.009ns | 0.499** | 0.104ns | -0.149 ns | 0.227* | 0.158ns | 0.592** |
[1] | Adam G, Duncan H (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 943-951. |
[2] | Annals Compiling Committee of Daofu County in Sichuan Province (1997). Daofu County Annals. Sichuan People Press, Chengdu. (in Chinese) |
[ 四川省道孚县志编纂委员会 (1997). 道孚县志. 四川人民出版社, 成都.] | |
[3] | Bandick AK, Dick RP (1999). Field management effects on soil enzyme activities. Soil Biology & Biochemistry, 31, 1471-1479. |
[4] |
Bárcenas-Moreno G, Bååth E (2009). Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biology & Biochemistry, 41, 2517-2526.
DOI URL |
[5] | Beck T (1984). Munich for the Determination of Some Aspects of Soil Fertility. Roman National Society of Soil Science, Bucharest. |
[6] |
Bending GD, Turner MK, Rayns F, Marx MC, Wood M (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology & Biochemistry, 36, 1785-1792.
DOI URL |
[7] | Boerner R, Brinkman JA (2003). Fire frequency and soil enzyme activity in southern Ohio oak-hickory forests. Applied Soil Ecology, 23, 137-146. |
[8] | Boerner RE, Decker KL, Sutherland EK (2000). Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biology & Biochemistry, 32, 899-908. |
[9] | Boerner RE, Giai C, Huang J, Miesel JR (2008). Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biology & Biochemistry, 40, 3076-3085. |
[10] |
Certini G (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
DOI URL PMID |
[11] | D’Ascoli R, Rutigliano FA, de Pascale RA, Gentile A, de Santo AV (2005). Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires. International Journal of Wildland Fire, 14, 355-363. |
[12] | Debano LF, Neary DG, Ffolliott PF (1998). Fire Effects on Ecosystems. John Wiley & Sons, Manhattan, USA. |
[13] | Docherty KM, Balser TC, Bohannan BJ, Gutknecht JL (2012). Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry, 109, 63-83. |
[14] | Eivazi F, Tabatabai MA (1988). Glucosidases and galactos- idases in soils. Soil Biology & Biochemistry, 120, 601-606. |
[15] | Giai C, Boerner REJ (2007). Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA. Applied Soil Ecology, 35, 281-290. |
[16] | Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity- ecosystem function relationship. Oikos, 90, 279-294. |
[17] | Guan SY (1986). Soil Enzyme and Its Study Method. Agricul- ture Press, Beijing. (in Chinese) |
[ 关松荫 (1986). 土壤酶及其研究法. 农业出版社, 北京.] | |
[18] | Guénon R, Gros R (2013). Frequent-wildfires with shortened time-since-fire affect soil microbial functional stability to drying and rewetting events. Soil Biology & Biochemistry, 57, 663-674. |
[19] | Gutknecht JL, Henry HA, Balser TC (2010). Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia, 53, 283-293. |
[20] | Hamman ST, Burke IC, Stromberger ME (2007). Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biology & Biochemistry, 39, 1703-1711. |
[21] | Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220, 166-184. |
[22] | Huang WW, Liu JJ, Zhou GG, Zhang DD, Deng QQ (2011). Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China. Biogeosciences, 8, 157-183. |
[23] | Li ZG, Luo YM, Teng Y (2008). Research Methods of Soil and Environment Microorganism. Science Press, Beijing. (in Chinese) |
[ 李振高, 骆永明, 滕应 (2008). 土壤与环境微生物研究法. 科学出版社, 北京.] | |
[24] | Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71. |
[25] | Perucci P (1992). Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils, 14, 54-60. |
[26] | Pourreza M, Hosseini SM, Safari Sinegani AA, Matinizadeh M, Dick WA (2014). Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213, 95-102. |
[27] | Raison RJ (1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil, 51, 73-108. |
[28] |
Rodriguez-Loinaz G, Onaindia M, Amezaga I, Mijangos I, Garbisu C (2008). Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology & Biochemistry, 40, 49-60.
DOI URL |
[29] |
Saa A, Trasar-Cepeda MC, Gil-Sotres F, Carballas T (1993). Changes in soil phosphorus and acid phosphatase activity immediately following forest fires. Soil Biology & Bio- chemistry, 25, 1223-1230.
DOI URL |
[30] |
Sàchez-Monedero MA, Mondini C, Cayuela ML, Roig A, Contin M, de Nobili M (2008). Fluorescein diacetate hydrolysis, respiration and microbial biomass in freshly amended soils. Biology and Fertility of Soils, 44, 885-890.
DOI URL |
[31] | Schimel J (1995). Ecosystem consequences of microbial diversity and community structure. In: Chapin F, Stuart III, Körner C eds. Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Springer, Berlin. 239-254. |
[32] | Schinner F, Ohlinger R, Kandeler E, Margesin R (1995). Methods in Soil Biology. Springer, Berlin. |
[33] | Shannon CE (2001). A mathematical theory of communication. ACM Sigmobile Mobile Computing and Communications Review, 5, 3-55. |
[34] |
The European Bioinformatics Institute (2004). Enzyme structures database. http://www.ebi.ac.uk/thornton-srv/ databases/enzymes/. Cited 2014-04-13.
URL PMID |
[35] | Wang CT, Cao GM, Wang QL, Jing ZC, Ding LM, Long RJ (2007). The change of plant community species composi- tion and biomass of alpine meadow in Qinghai-Tibet Pla- teau along the environmental gradient. Science in China (Series C: Life Sciences), 37, 585-592. (in Chinese) |
[ 王长庭, 曹广民, 王启兰, 景增春, 丁路明, 龙瑞军 (2007). 青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化. 中国科学(C辑: 生命科学), 37, 585-592.] | |
[36] |
Wang X, Xiang CH, Li XW, Wen DJ (2013). Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 37, 922-932. (in Chinese with English abstract)
DOI URL |
[ 王谢, 向成华, 李贤伟, 文冬菊 (2013). 冬季火对川西亚高山草地植物群落结构和牧草质量的影响. 植物生态学报, 37, 922-932.]
DOI URL |
|
[37] | Weaver RW, Angle JS, Bottmley PS (1994). Method of Soil Analysis. Soil Science Society of America, Madison. |
[38] | Zak JC, Willig MR, Moorhead DL, Wildman HG (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 26, 1101-1108. |
[39] |
Zhang YM, Wu N, Zhou GY, Bao WK (2005). Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Applied Soil Ecology, 30, 215-225.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[4] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[9] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[10] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[11] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[12] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[13] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[14] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[15] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19