植物生态学报 ›› 2013, Vol. 37 ›› Issue (10): 922-932.DOI: 10.3724/SP.J.1258.2013.00095
收稿日期:
2013-07-08
接受日期:
2013-08-27
出版日期:
2013-07-08
发布日期:
2013-09-29
通讯作者:
李贤伟
基金资助:
WANG Xie1,XIANG Cheng-Hua2,LI Xian-Wei1,*(),WEN Dong-Ju1
Received:
2013-07-08
Accepted:
2013-08-27
Online:
2013-07-08
Published:
2013-09-29
Contact:
LI Xian-Wei
摘要:
火是继土壤、水分、温度之后, 塑造地表植被的主要力量。该文以2010年“12·5”冬草场火烧事件为背景, 通过对比川西亚高山草地火烧区域和未火烧区域火后第一年植被群落结构和牧草质量, 探讨亚高山草地植被对冬季火烧的响应机制。通过物种多样性分析、双向指示种分析(TWINSPAN)和干重等级法(dry-weight-rank)分析发现, 冬季火烧未改变植被的生物多样性、均匀度和物种丰富度, 却改变了植被群落结构的物种组成。冬季火烧导致一年生禾草、一年生杂草、灌木等3种生活型植物的数量和生物量增加; 多年生杂草数量减少, 生物量增加; 多年生禾草数量和生物量减少。冬季火烧也极大地减少了可食禾草的比例, 增加了各种杂草的生物量比例。此次火烧事件降低了细柄草(Capillipedium parviflorum)和早熟禾(Poa sp.)等可食禾草的竞争能力, 增加了一些杂草(如火绒草(Leontopodium leontopodioides)、白莲蒿(Artemisia sacrorum)、草玉梅(Anemone rivularis)等)在资源竞争中的相对优势, 最终表现为火后牧草的可食性下降。
王谢,向成华,李贤伟,文冬菊. 冬季火对川西亚高山草地植物群落结构和牧草质量的影响. 植物生态学报, 2013, 37(10): 922-932. DOI: 10.3724/SP.J.1258.2013.00095
WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 2013, 37(10): 922-932. DOI: 10.3724/SP.J.1258.2013.00095
类型 Type | 三个样地编号 IDs of three plots | 处理 Treatment | 地理环境 Geographical environment | 土壤性质 Soil characteristics | |||||
---|---|---|---|---|---|---|---|---|---|
坡位 Slope position | 坡向 Slope aspect | 海拔 Elevation (m) | 容重 Bulk density (g.cm-3)1) | 含水量 Moisture (%)1) | pH2) | ||||
B1 | b07; b08; b09 | 火烧 Burned | 上 Upper | 东 East | 3 429 | 0.992 | 22.3 | 6.60 | |
B2 | b10; b11; b12 | 火烧 Burned | 中 Middle | 东 East | 3 454 | 1.055 | 15.1 | 7.28 | |
B3 | b13; b14; b15 | 火烧 Burned | 下 Lower | 东 East | 3 461 | 1.051 | 15.4 | 7.54 | |
B4 | b04; b05; b06 | 火烧 Burned | 上 Upper | 西 West | 3 315 | 0.932 | 26.6 | 6.30 | |
B5 | b01; b02; b03 | 火烧 Burned | 中 Middle | 西 West | 3 243 | 1.058 | 15.6 | 6.71 | |
B6 | b16; b17; b18 | 火烧 Burned | 下 Lower | 西 West | 3 487 | 0.946 | 16.7 | 7.24 | |
U1 | u07; u08; u09 | 未火烧 Unburned | 上 Upper | 东 East | 3 409 | 0.993 | 23.4 | 6.44 | |
U2 | u10; u11; u12 | 未火烧 Unburned | 中 Middle | 东 East | 3 334 | 1.043 | 22.2 | 7.04 | |
U3 | u13; u14; u15 | 未火烧 Unburned | 下 Lower | 东 East | 3 444 | 0.987 | 19.3 | 7.47 | |
U4 | u04; u05; u06 | 未火烧 Unburned | 上 Upper | 西 West | 3 424 | 0.929 | 32.4 | 6.36 | |
U5 | u01; u02; u03 | 未火烧 Unburned | 中 Middle | 西 West | 3 196 | 1.068 | 17.0 | 6.63 | |
U6 | u16; u17; u18 | 未火烧 Unburned | 下 Lower | 西 West | 3 484 | 1.079 | 18.5 | 7.15 |
表1 样地基本情况
Table 1 General situation of sample plots
类型 Type | 三个样地编号 IDs of three plots | 处理 Treatment | 地理环境 Geographical environment | 土壤性质 Soil characteristics | |||||
---|---|---|---|---|---|---|---|---|---|
坡位 Slope position | 坡向 Slope aspect | 海拔 Elevation (m) | 容重 Bulk density (g.cm-3)1) | 含水量 Moisture (%)1) | pH2) | ||||
B1 | b07; b08; b09 | 火烧 Burned | 上 Upper | 东 East | 3 429 | 0.992 | 22.3 | 6.60 | |
B2 | b10; b11; b12 | 火烧 Burned | 中 Middle | 东 East | 3 454 | 1.055 | 15.1 | 7.28 | |
B3 | b13; b14; b15 | 火烧 Burned | 下 Lower | 东 East | 3 461 | 1.051 | 15.4 | 7.54 | |
B4 | b04; b05; b06 | 火烧 Burned | 上 Upper | 西 West | 3 315 | 0.932 | 26.6 | 6.30 | |
B5 | b01; b02; b03 | 火烧 Burned | 中 Middle | 西 West | 3 243 | 1.058 | 15.6 | 6.71 | |
B6 | b16; b17; b18 | 火烧 Burned | 下 Lower | 西 West | 3 487 | 0.946 | 16.7 | 7.24 | |
U1 | u07; u08; u09 | 未火烧 Unburned | 上 Upper | 东 East | 3 409 | 0.993 | 23.4 | 6.44 | |
U2 | u10; u11; u12 | 未火烧 Unburned | 中 Middle | 东 East | 3 334 | 1.043 | 22.2 | 7.04 | |
U3 | u13; u14; u15 | 未火烧 Unburned | 下 Lower | 东 East | 3 444 | 0.987 | 19.3 | 7.47 | |
U4 | u04; u05; u06 | 未火烧 Unburned | 上 Upper | 西 West | 3 424 | 0.929 | 32.4 | 6.36 | |
U5 | u01; u02; u03 | 未火烧 Unburned | 中 Middle | 西 West | 3 196 | 1.068 | 17.0 | 6.63 | |
U6 | u16; u17; u18 | 未火烧 Unburned | 下 Lower | 西 West | 3 484 | 1.079 | 18.5 | 7.15 |
盖度 Coverage | 频度 Frequency | |||||
---|---|---|---|---|---|---|
原始值 Original value | Braun-Blanquet等级 Braun-Blanquet class | 赋值 Value | 统计值 Statistical value | Raunkiaer频度等级 Raunkiaer’s frequency class | 赋值 Value | |
0%-5% | <5% | 1 | 0%-20% | A | 1 | |
6%-25% | 6%-25% | 2 | 21%-40% | B | 2 | |
26%-50% | 26%-50% | 3 | 41%-60% | C | 3 | |
51%-75% | 51%-75% | 4 | 61% -80% | D | 4 | |
76%-100% | 76%-100% | 5 | 81%-100% | E | 5 |
表2 盖度和频度的等级及其赋值
Table 2 Rank of coverage and frequency and valuation of rank
盖度 Coverage | 频度 Frequency | |||||
---|---|---|---|---|---|---|
原始值 Original value | Braun-Blanquet等级 Braun-Blanquet class | 赋值 Value | 统计值 Statistical value | Raunkiaer频度等级 Raunkiaer’s frequency class | 赋值 Value | |
0%-5% | <5% | 1 | 0%-20% | A | 1 | |
6%-25% | 6%-25% | 2 | 21%-40% | B | 2 | |
26%-50% | 26%-50% | 3 | 41%-60% | C | 3 | |
51%-75% | 51%-75% | 4 | 61% -80% | D | 4 | |
76%-100% | 76%-100% | 5 | 81%-100% | E | 5 |
排名 Rank | 科 Family | 属 Genus | 种 Species | |||||
---|---|---|---|---|---|---|---|---|
名称 Name | 比例 Proportion | 名称 Name | 比例 Proportion | 名称 Name | 比例 Proportion | |||
1 | 菊科 Compositae | 18.67% | 委陵菜属 Potentilla | 6.67% | 川甘火绒草 Leontopodium chuii | 5.18% | ||
2 | 禾本科 Gramineae | 13.69% | 火绒草属 Leontopodium | 5.63% | 嵩草 Kobresia sp. | 4.55% | ||
3 | 蔷薇科 Rosaceae | 12.24% | 蒿属 Artemisia | 5.42% | 高山豆 Tibetia himalaica | 4.35% | ||
4 | 豆科 Leguminosae | 11.00% | 嵩草属 Kobresia | 4.58% | 早熟禾属 Poa sp. | 4.35% | ||
5 | 毛茛科 Ranunculaceae | 7.26% | 拉拉藤属 Galium | 4.58% | 钉柱委陵菜 Potentilla saundersiana | 3.73% | ||
6 | 莎草科 Cyperaceae | 6.85% | 早熟禾属 Poa | 4.38% | 狼毒 Stellera chamaejasme | 3.73% | ||
7 | 茜草科 Rubiaceae | 4.56% | 高山豆属 Tibetia | 4.38% | 拉拉藤 Galium aparine | 3.52% | ||
8 | 瑞香科 Thymelaeaceae | 3.73% | 银莲花属 Anemone | 3.75% | 直梗高山唐松草 Thalictrum alpinum var. elatum | 3.11% | ||
9 | 报春花科 Primulaceae | 3.11% | 野豌豆属 Vicia | 3.75% | 重冠紫菀 Aster diplostephioides | 3.11% | ||
10 | 唇形科 Labiatae | 2.49% | 狼毒属 Stellera | 3.75% | 野豌豆 Vicia sativa | 2.90% | ||
总计 Total | 83.61% | 46.88% | 38.51% |
表3 36个样地的植物区系组成
Table 3 Floristic composition of 36 sample plots
排名 Rank | 科 Family | 属 Genus | 种 Species | |||||
---|---|---|---|---|---|---|---|---|
名称 Name | 比例 Proportion | 名称 Name | 比例 Proportion | 名称 Name | 比例 Proportion | |||
1 | 菊科 Compositae | 18.67% | 委陵菜属 Potentilla | 6.67% | 川甘火绒草 Leontopodium chuii | 5.18% | ||
2 | 禾本科 Gramineae | 13.69% | 火绒草属 Leontopodium | 5.63% | 嵩草 Kobresia sp. | 4.55% | ||
3 | 蔷薇科 Rosaceae | 12.24% | 蒿属 Artemisia | 5.42% | 高山豆 Tibetia himalaica | 4.35% | ||
4 | 豆科 Leguminosae | 11.00% | 嵩草属 Kobresia | 4.58% | 早熟禾属 Poa sp. | 4.35% | ||
5 | 毛茛科 Ranunculaceae | 7.26% | 拉拉藤属 Galium | 4.58% | 钉柱委陵菜 Potentilla saundersiana | 3.73% | ||
6 | 莎草科 Cyperaceae | 6.85% | 早熟禾属 Poa | 4.38% | 狼毒 Stellera chamaejasme | 3.73% | ||
7 | 茜草科 Rubiaceae | 4.56% | 高山豆属 Tibetia | 4.38% | 拉拉藤 Galium aparine | 3.52% | ||
8 | 瑞香科 Thymelaeaceae | 3.73% | 银莲花属 Anemone | 3.75% | 直梗高山唐松草 Thalictrum alpinum var. elatum | 3.11% | ||
9 | 报春花科 Primulaceae | 3.11% | 野豌豆属 Vicia | 3.75% | 重冠紫菀 Aster diplostephioides | 3.11% | ||
10 | 唇形科 Labiatae | 2.49% | 狼毒属 Stellera | 3.75% | 野豌豆 Vicia sativa | 2.90% | ||
总计 Total | 83.61% | 46.88% | 38.51% |
指标 Index | 平均值 Mean | 95%置信区间 95% CI | 方差分析 ANOVA | |||||
---|---|---|---|---|---|---|---|---|
火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | 自由度 df | p值 p value | |||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 1.92 | 1.89 | -0.22 | 0.28 | 1 | 0.83 | ||
Simpson多样性指数 Simpson diversity index | 0.75 | 0.77 | -0.10 | 0.06 | 1 | 0.61 | ||
Inverse-Simpson多样性指数 Inverse-Simpson diversity index | 5.40 | 4.83 | -0.93 | 2.07 | 1 | 0.44 | ||
物种丰富度 Species richness | 13 | 13 | -2 | 2 | 1 | 0.87 | ||
Pielou均匀度指数 Pielou’s evenness index | 0.74 | 0.73 | -0.06 | 0.08 | 1 | 0.83 |
表4 火烧区域与未火烧区域的植物多样性指数和均匀度指数的差异
Table 4 Differences of plant diversity index and evenness index between burned and unburned area
指标 Index | 平均值 Mean | 95%置信区间 95% CI | 方差分析 ANOVA | |||||
---|---|---|---|---|---|---|---|---|
火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | 自由度 df | p值 p value | |||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 1.92 | 1.89 | -0.22 | 0.28 | 1 | 0.83 | ||
Simpson多样性指数 Simpson diversity index | 0.75 | 0.77 | -0.10 | 0.06 | 1 | 0.61 | ||
Inverse-Simpson多样性指数 Inverse-Simpson diversity index | 5.40 | 4.83 | -0.93 | 2.07 | 1 | 0.44 | ||
物种丰富度 Species richness | 13 | 13 | -2 | 2 | 1 | 0.87 | ||
Pielou均匀度指数 Pielou’s evenness index | 0.74 | 0.73 | -0.06 | 0.08 | 1 | 0.83 |
图1 TWINSPAN聚类分析的植被分类结果。“西南草莓 1(+)”, 为约束条件式, 表示群落中有盖度为0%-4%的西南草莓; 其中, “1”表示植物种的盖度在0%-4%范围内, “(+)”表示存在; “(-)”表示不存在。I, 西南草莓(Fragaria moupinensis)-糙毛鹅观草(Roegneria hirsuta)-早熟禾(Poa sp.)-毛茛(Ranunculus acris)-珠芽蓼(Polygonum viviparum)群丛组; II, 糙毛鹅观草群丛组; III, 异燕麦(Helictotrichon sp.)-早熟禾群丛组; IV, 白花刺参(Morina nepalensis)-草玉梅(Anemone rivularis)-嵩草(Kobresia sp.)-薹草(Carex sp.)群丛组; V, 早熟禾-薹草-钉柱委陵菜(Potentilla saundersiana)群丛组; VI, 细柄草(Capillipedium parviflorum)-披碱草(Elymus dahuricus)-香茅(Cymbopogon sp.)群丛组; VII, 细柄草-异燕麦-早熟禾群丛组; VIII, 披碱草-嵩草-早熟禾属群丛组; IX, 披碱草-云南老鹳草(Geranium yunanense)群丛组; X, 披碱草-嵩草-风毛菊(Saussurea sp.)群丛组; XI, 披碱草-白莲蒿(Artemisia sacrorum)群丛组; XII, 异燕麦群丛组。N表示负响应, P表示正响应。“b1”, “b2”, …, “b18”为18个火烧样地的编号。“u1”, “u2”, …, “u18”为18个未火烧样地的编号。
Fig. 1 Vegetation classified by TWINSPAN cluster analysis. “Fragaria moupinensis 1(+)”, a constraint equation, means coverage of Fragaria moupinens in community is 0%-4%; of this, “1”, coverage of species is in the range of 0%-4%; (+), present; (-), absent. I, Assoc. Fragaria moupinensis-Roegneria hirsute-Poa sp.-Ranunculus acris-Polygonum viviparum; II, Assoc. Roegneria hirsute; III, Assoc. Helictotrichon sp.-Poa sp.; IV, Assoc. Morina nepalensis-Anemone rivularis-Kobresia sp.-Carex sp.; V, Assoc. Poa sp. -Carex sp.-Potentilla saundersiana; VI, Assoc. Capillipedium parviflorum-Elymus dahuricus-Cymbopogon sp.; VII, Assoc. Capillipedium parviflorum-Helictotrichon sp.-Poa sp.; VIII, Assoc. Elymus dahuricus-Kobresia sp.-Poa sp.; IX, Assoc. Elymus dahuricus-Geranium yunanense; X, Assoc. Elymus dahuricus-Kobresia sp.-Saussurea sp.; XI, Assoc. Elymus dahuricus-Artemisia sacrorum; XII, Assoc. Helictotrichon sp. N, negative response; P, positive response. “b1”, “b2”, …,“b18”, IDs of 18 sample plots with burned; “u1”, “u2”, …,“u18”, IDs of 18 sample plots with unburned.
未火烧区域 Unburned area | 火烧区域 Burned area | |
---|---|---|
可食禾草 Edible graminoid species | 41.11% | 31.76% |
可食莎草类 Edible sedge species | 3.89% | 5.29% |
可食豆类 Edible leguminous species | 5.00% | 4.71% |
可食杂草类 Edible forbs species | 47.78% | 57.06% |
毒草 Noxious species | 2.22% | 1.18% |
表5 牧草各组分的相对比例(基于干重等级法计算)
Table 5 Relative proportions of composition of forage grass (calculated by dry-weight-rank)
未火烧区域 Unburned area | 火烧区域 Burned area | |
---|---|---|
可食禾草 Edible graminoid species | 41.11% | 31.76% |
可食莎草类 Edible sedge species | 3.89% | 5.29% |
可食豆类 Edible leguminous species | 5.00% | 4.71% |
可食杂草类 Edible forbs species | 47.78% | 57.06% |
毒草 Noxious species | 2.22% | 1.18% |
[1] |
Ahlgren IF, Ahlgren CE(1960). Ecological effects of forest fires. The Botanical Review, 26, 483-533.
DOI URL |
[2] | Andersen AN, Braithwaite RW, Cook GD, Corbett LK, Williams RJ, Douglas MM, Gill A, Setterfield SA, Muller WJ(1998). Fire research for conservation management in tropical savannas: introducing the Kapalga fire experiment. Australian Journal of Ecology, 23, 95-110. |
[3] |
Anderson RS, Allen CD, Toney JL, Jass RB, Bair AN(2008). Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA. International Journal of Wildland Fire, 17, 96-114.
DOI URL |
[4] | Annals Compiling Committee of Daofu County in Sichuan Province (1997). Daofu County Annals. Sichuan People Press, Chengdu. (in Chinese) |
[ 四川省道孚县志编纂委员会 (1997). 道孚县志. 四川人民出版社, 成都.] | |
[5] |
Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT(2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment Resource, 29, 261-299.
DOI URL |
[6] |
Bahm MA, Barnes TG, Jensen KC(2011). Herbicide and fire effects on smooth brome (Bromus inermis) and Kentucky bluegrass(Poa pratensis) in invaded prairie remnants. Invasive Plant Science and Management, 4, 189-197.
DOI URL |
[7] |
Biondini ME, Steuter AA, Grygiel CE(1989). Seasonal fire effects on the diversity patterns, spatial distribution and community structure of forbs in the northern mixed prairie, USA. Vegetatio, 85, 21-31.
DOI URL |
[8] |
Bock JH, Bock CE(1992). Vegetation responses to wildfire in native versus exotic Arizona grassland. Journal of Vegetation Science, 3, 439-446.
DOI URL |
[9] | Boyd CS, Davies KW(2010). Shrub microsite influences post-fire perennial grass establishment. Rangeland Ecology & Management, 63, 248-252. |
[10] |
Briggs JM, Knapp AK(1995). Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. American Journal of Botany, 82, 1024-1030.
DOI URL |
[11] |
Brockway DG, Gatewood RG, Paris RB(2002). Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. Journal of Environmental Management, 65, 135-152.
DOI URL |
[12] |
Collins SL(1989). Experimental analysis of patch dynamics and community heterogeneity in tallgrass prairie. Vegetatio, 85, 57-66.
DOI URL |
[13] |
Collins SL(1992). Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology, 73, 2001-2006.
DOI URL |
[14] |
Collins SL, Adams DE(1983). Succession in grasslands: thirty-two years of change in a central Oklahoma tallgrass prairie. Vegetatio, 51, 181-190.
DOI URL |
[15] | Collins SL, Wallace LL (1990). Fire in North American Tallgrass Prairies. University of Oklahoma Press, Oklahoma, USA. |
[16] |
Curtis JT, Partch ML(1948). Effect of fire on the competition between blue grass and certain prairie plants. American Midland Naturalist, 39, 437-443.
DOI URL |
[17] |
D’Antonio CM, Vitousek PM(1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63-87.
DOI URL |
[18] | DeBenedetti SH, Parsons DJ(1979). Natural fire in subalpine meadows: a case description from the Sierra Nevada. Journal of Forestry, 77, 477-479. |
[19] |
Engle DM, Bidwell TG(2001). Viewpoint: the response of central North American prairies to seasonal fire. Journal of Range Management, 54, 2-10.
DOI URL |
[20] | Ewing AL, Engle DM(1988). Effects of late summer fire on tallgrass prairie microclimate and community composition. American Midland Naturalist, 20, 212-223. |
[21] |
Flematti GR, Merritt DJ, Piggott MJ, Trengove RD, Smith SM, Dixon KW, Ghisalberti EL(2011). Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2, 360.
DOI URL |
[22] | Ford PL, Johnson GV(2006). Effects of dormant-vs. growing-season fire in shortgrass steppe: biological soil crust and perennial grass responses. Journal of Arid Environments, 67, 1-14. |
[23] |
Gibson DJ(1988). Regeneration and fluctuation of tallgrass prairie vegetation in rresponse to burning frequency. Bulletin of the Torrey Botanical Club, 115, 1-12.
DOI URL |
[24] |
Gill AM(1975). Fire and the Australian flora: a review. Australian Forestry, 38, 4-25.
DOI URL |
[25] |
Hallett DJ, Anderson RS(2010). Paleofire reconstruction for high-elevation forests in the Sierra Nevada, California, with implications for wildfire synchrony and climate variability in the late Holocene. Quaternary Research, 73, 180-190.
DOI URL |
[26] |
Hardison JR(1976). Fire and flame for plant disease control. Annual Review of Phytopathology, 14, 355-379.
DOI URL |
[27] | Harris WN, Boutton TW, Ansley RJ(2008). Plant community and soil microbial carbon and nitrogen responses to fire and clipping in a southern mixed grassland. Rangeland Ecology & Management, 61, 580-587. |
[28] |
Harrison S, Inouye BD, Safford HD(2003). Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conservation Biology, 17, 837-845.
DOI URL |
[29] | Heady HF(1975). Rangeland Management. McGraw-Hill, New York. |
[30] |
Hobbs RJ, Huenneke LF(1992). Disturbance, diversity, and invasion: implications for conservation. Conservation Biology, 6, 324-337.
DOI URL |
[31] |
Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD(2009). Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska. Arctic Antarctic and Alpine Research, 41, 309-316.
DOI URL |
[32] |
Keeley JE, Lubin D, Fotheringham CJ(2003). Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada. Ecological Applications, 13, 1355-1374.
DOI URL |
[33] | Li XH, Wu WJ, Zhang CH, Guo RQ (2011). Influence of climate change on north-eastern of Inner Mongolia grassland forest fire. Journal of Arid Land Resources and Environment, 25, 114-119. (in Chinese with English abstract) |
[ 李兴华, 武文杰, 张存厚, 郭瑞清 (2011). 气候变化对内蒙古东北部森林草原火灾的影响. 干旱区资源与环境, 25, 114-119.] | |
[34] | Li W, Zuo X, Knops JMH(2013). Different fire frequency impacts over 27 years on vegetation succession in an infertile old-field grassland. Rangeland Ecology & Management, 66, 267-273. |
[35] | Lunt ID, Prober SM, Morgan JW (2012). How do fire regimes affect ecosystem structure, function and diversity in grasslands and grassy woodlands of southern Australia. In: Bradstock R, Williams R, Gill A eds. Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World. CSIRO Publishing, Melbourne. 253-270. |
[36] |
Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EA. Shaver GR, Verbyla DL(2011). Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475, 489-492.
DOI URL |
[37] |
Mannetje LT, Haydock KP(1963). The dry-weight-rank method for the botanical analysis of pasture. Grass and Forage Science, 18, 268-275.
DOI URL |
[38] |
McIvor JG, McIntyre S, Saeli I, Hodgkinson JJ(2005). Patch dynamics in grazed subtropical native pastures in south- east Queensland. Austral Ecology, 30, 445-464.
DOI URL |
[39] |
Monteiro AT, Fava F, Hiltbrunner E, Della Marianna G, Bocchi S(2011). Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landscape and Urban Planning, 100, 287-294.
DOI URL |
[40] |
Moretti M, Obrist MK, Duelli P(2004). Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography, 27, 173-186.
DOI URL |
[41] |
Mphale KM, Heron ML(2007). Plant alkali content and radio wave communication efficiency in high intensity savanna wildfires. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 471-484.
DOI URL |
[42] |
Neary DG, Klopatek CC, DeBano LF, Ffolliott PF(1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71.
DOI URL |
[43] |
Perrakis DD, Agee JK(2006). Seasonal fire effects on mixed-conifer forest structure and ponderosa pine resin properties. Canadian Journal of Forest Research, 36, 238-254.
DOI URL |
[44] | Pei CF (1997). Effect of fire on grassland vegetation of Stipa krylovii+Agropyron cristatum-Artemisia frigida type. Pratacultural Science, 14, 2-4. (in Chinese with English abstract) |
[ 裴成芳 (1997). 草原火对克氏针茅+扁穗冰草-冷蒿型草地植被的影响. 草业科学, 14, 2-4.] | |
[45] |
Pielou E(1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
DOI URL |
[46] | Qu ZP, Zheng SX, Bai YF (2010). Spatiotemporal patterns and driving factors of grassland fire on Mongolian Plateau. Chinese Journal of Applied Ecology, 21, 807-813. (in Chinese with English abstract) |
[ 曲炤鹏, 郑淑霞, 白永飞 (2010). 蒙古高原草原火行为的时空格局与影响因子. 应用生态学报, 21, 807-813.] | |
[47] | Robinett D(1994). Fire effects on southeastern Arizona plains grasslands. Rangelands, 16, 143-148. |
[48] |
Scholes RJ, Archer SR(1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517-544.
DOI URL |
[49] |
Seastedt TR, Briggs JM, Gibson DJ(1991). Controls of nitrogen limitation in tallgrass prairie. Oecologia, 87, 72-79.
DOI URL |
[50] | Seastedt TR, Pyšek P(2011). Mechanisms of plant invasions of North American and European grasslands. Annual Review of Ecology, Evolution, and Systematics, 42, 133-153. |
[51] | Shannon CE(2001). A mathematical theory of communication. Acm Sigmobile Mobile Computing and Communications Review, 5, 3-55. |
[52] | Shi FS, Wu N, Luo P, Yi SL, Wu Y, Wang Q, Li YL, Chen H, Gao YH (2007). Effect of enclosing on community sructure of subalpine meadow in northwestern Sichuan, China. Chinese Journal of Apply Environmental Biology, 13, 767-770. (in Chinese with English abstract) |
[ 石福孙, 吴宁, 罗鹏, 易绍良, 吴彦, 王乾, 李亚澜, 陈槐, 高永恒 (2007). 围栏禁牧对川西北亚高山高寒草甸群落结构的影响. 应用与环境生物学报, 13, 767-770.] | |
[53] |
Simpson EH(1949). Measurement of diversity. Nature, 163, 688.
DOI URL |
[54] |
Towne G, Owensby C(1984). Long-term effects of annual burning at different dates in ungrazed Kansas tallgrass prairie. Journal of Range Management, 37, 392-397.
DOI URL |
[55] |
Vermeire LT, Crowder JL, Wester DB(2011). Plant community and soil environment response to summer fire in the northern Great Plains. Rangeland Ecology and Management, 64, 37-46.
DOI URL |
[56] | Whisenant SG (1990). Changing fire frequencies on Idaho’s Snake River Plains: ecological and management implications. In: . McArthur ED, Romney EM, Smith SD, Tueller PT eds. Proceedings Symposium on Cheatgrass Invasion, Shrub Die-Off, and Other Aspects of Shrub Biology and Management. Intermountain Research Station, Ogden, USA. |
[57] | Wu N (2004). Traditional utilization of rangelands in western Sichuan—Disputation on pastoral nomadism. Journal of Mountain Science, 22, 641-647.(in Chinese with English abstract) |
[ 吴宁 (2004). 川西草地的传统利用——关于游牧的辩驳. 山地学报, 22, 641-647.] | |
[58] |
Wu GL, Du GZ, Liu ZH, Thirgood S(2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126.
DOI URL |
[59] | Zhou DW (1995). Vegetation Fire Ecology and Vegetation Fire Management. Jilin Science & Technology Press, Changchun. (in Chinese) |
[ 周道玮 (1995). 植被火生态与植被火管理. 吉林科学技术出版社, 长春.] |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[3] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[4] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[5] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[8] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[11] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[12] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[13] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[14] | 钏会艳, 贾东瑞, 浦江, 张翠萍, 李淑英, 周元清. 云南新平铁坚油杉森林群落结构特征[J]. 植物生态学报, 2021, 45(2): 207-212. |
[15] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19