植物生态学报 ›› 2019, Vol. 43 ›› Issue (2): 152-164.DOI: 10.17521/cjpe.2017.0280
所属专题: 土壤呼吸
李建军1,2,刘恋1,2,陈迪马1,许丰伟1,2,程军回3,白永飞1,**()
收稿日期:
2017-11-02
接受日期:
2018-04-19
出版日期:
2019-02-20
发布日期:
2019-06-04
通讯作者:
白永飞
基金资助:
LI Jian-Jun1,2,LIU Lian1,2,CHEN Di-Ma1,XU Feng-Wei1,2,CHENG Jun-Hui3,BAI Yong-Fei1,**()
Received:
2017-11-02
Accepted:
2018-04-19
Online:
2019-02-20
Published:
2019-06-04
Contact:
BAI Yong-Fei
Supported by:
摘要:
生态学家对土壤呼吸开展了大量研究, 但很少评估“底座”对土壤呼吸测量结果的影响, 特别是底座入土深度和面积对土壤呼吸测定结果的影响。为此, 该研究在内蒙古典型草原设置了2个底座面积(15 cm × 15 cm和30 cm × 30 cm)和2个底座入土深度(2 cm和5 cm)处理, 采用气室法在植物生长季对土壤呼吸进行了测定, 分析评估了底座面积和入土深度对土壤呼吸测定结果的影响。结果显示: 与底座入土较浅和面积较小的处理相比, 底座入土较深和面积较大的处理, 土壤呼吸测定值分别降低了8.0%-9.7%和9.1%-10.8%; 这两个处理的底座内土壤温度显著升高, 土壤含水量显著下降, 地上净初级生产力显著降低。结构方程模型分析表明, 底座入土较深、面积较大的处理, 主要通过降低地上净初级生产力和土壤含水量, 增加土壤温度, 使土壤呼吸下降, 各因子共同解释了土壤呼吸变异的89%。研究发现, 在使用气室法测定土壤呼吸时, 底座入土深度和面积对土壤呼吸测定结果具有显著影响, 评估底座处理效应对准确测定土壤呼吸强度具有重要的意义。理论上, 适当降低底座入土深度和底座面积大小, 将有助于准确测定土壤呼吸。但在实践中, 由于土壤异质性的影响, 减少底座面积可能会增加新的测量误差, 只能考虑适当降低底座入土深度。
李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响. 植物生态学报, 2019, 43(2): 152-164. DOI: 10.17521/cjpe.2017.0280
LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe. Chinese Journal of Plant Ecology, 2019, 43(2): 152-164. DOI: 10.17521/cjpe.2017.0280
图1 底座入土深度、边长和降水事件对土壤呼吸速率(SR)(A)、土壤温度(ST)(B)和土壤含水量(SWC)(C)季节动态的影响。每个图内的插图为生长季平均值±标准误差。D2S15、D5S15、D2S30、D5S30同表2。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of collar buried depth, collar size, and precipitation events on soil respiration rate (SR)(A), soil temperature (ST)(B), and soil water content (SWC)(C) in the growing season of 2013 (insets: mean ± SE). D2S15、D5S15、D2S30、D5S30 see Table 2. Different lowercase letters indicate significant difference among treatments (p < 0.05).
处理 Treatment | 响应变量 Response variable | ||
---|---|---|---|
SR | ST | SWC | |
t | 506.6*** | 2293.6*** | 311.8*** |
D | 20.5*** | 143.8*** | 6.2* |
S | 35.9*** | 13.2** | 61.4*** |
t × D | 15.1*** | 24.7*** | 0.8ns |
t × S | 6.2** | 4.3* | 5.5** |
D × S | 0.6ns | 1.5ns | 1.2ns |
t × D × S | 7.2*** | 2.5ns | 0.2ns |
表1 底座入土深度(D)、底座边长(S)和测定时间(t)对土壤呼吸速率(SR)、土壤温度(ST)和土壤含水量(SWC)影响的重复测量方差分析结果
Table 1 Results of repeated measures ANOVA for the effects of collar buried depth (D), collar size (S), and time of measurement (t) on soil respiration (SR), soil temperature (ST), and soil water content (SWC)
处理 Treatment | 响应变量 Response variable | ||
---|---|---|---|
SR | ST | SWC | |
t | 506.6*** | 2293.6*** | 311.8*** |
D | 20.5*** | 143.8*** | 6.2* |
S | 35.9*** | 13.2** | 61.4*** |
t × D | 15.1*** | 24.7*** | 0.8ns |
t × S | 6.2** | 4.3* | 5.5** |
D × S | 0.6ns | 1.5ns | 1.2ns |
t × D × S | 7.2*** | 2.5ns | 0.2ns |
日期 Date | 处理 Treatment | SR | ST | SWC |
---|---|---|---|---|
2013-06-24 | D2S15 | 4.22 ± 0.10ab | 15.83 ± 0.08b | 17.12 ± 1.30a |
D5S15 | 4.58 ± 0.11a | 18.08 ± 0.27a | 15.52 ± 0.75a | |
D2S30 | 4.10 ± 0.16b | 16.33 ± 0.14b | 17.50 ± 1.00a | |
D5S30 | 4.52 ± 0.12a | 17.98 ± 0.13a | 15.92 ± 0.8a | |
2013-07-06 | D2S15 | 5.68 ± 0.52a | 18.05 ± 0.10c | 20.67 ± 1.43a |
D5S15 | 4.79 ± 0.16b | 19.83 ± 0.11a | 17.20 ± 1.05a | |
D2S30 | 4.58 ± 0.11b | 18.83 ± 0.08b | 19.02 ± 1.36a | |
D5S30 | 4.69 ± 0.20b | 19.73 ± 0.05a | 19.03 ± 0.80a | |
2013-07-22 | D2S15 | 8.10 ± 0.18a | 23.27 ± 0.24c | 26.68 ± 0.4a |
D5S15 | 6.00 ± 0.06b | 23.78 ± 0.07bc | 24.17 ± 0.21b | |
D2S30 | 6.29 ± 0.22b | 24.13 ± 0.26ab | 25.68 ± 0.43a | |
D5S30 | 5.37 ± 0.07c | 24.40 ± 0.20a | 22.72 ± 0.62c | |
2013-08-14 | D2S15 | 5.21 ± 0.22a | 20.43 ± 0.13a | 19.88 ± 1.53a |
D5S15 | 5.26 ± 0.20a | 20.48 ± 0.08a | 18.63 ± 0.88a | |
D2S30 | 5.38 ± 0.31a | 20.43 ± 0.13a | 19.47 ± 1.19a | |
D5S30 | 3.96 ± 0.09b | 20.72 ± 0.09a | 15.23 ± 0.65b | |
2013-09-15 | D2S15 | 3.31 ± 0.15a | 12.33 ± 0.29b | 14.10 ± 0.83ab |
D5S15 | 3.42 ± 0.11a | 14.83 ± 0.13a | 13.97 ± 0.43ab | |
D2S30 | 3.02 ± 0.13a | 11.55 ± 0.22c | 14.93 ± 1.3a | |
D5S30 | 3.17 ± 0.15a | 15.00 ± 0.17a | 11.77 ± 0.56b | |
2013-10-16 | D2S15 | 0.63 ± 0.03a | 7.65 ± 0.54b | 8.33 ± 0.42a |
D5S15 | 0.66 ± 0.02a | 8.28 ± 0.27ab | 6.90 ± 0.38b | |
D2S30 | 0.67 ± 0.02a | 9.12 ± 0.52a | 8.27 ± 0.41a | |
D5S30 | 0.60 ± 0.04a | 8.88 ± 0.31ab | 6.48 ± 0.17b |
表2 底座入土深度和底座边长对生长季土壤呼吸速率(SR)、土壤温度(ST)和土壤含水量(SWC)单次测量结果的单因素方差分析
Table 2 The variables to collar buried depth and side length of the square collar on soil respiration rate (SR), soil temperature (ST), and soil water content (SWC) of each time depend on one-way ANOVA
日期 Date | 处理 Treatment | SR | ST | SWC |
---|---|---|---|---|
2013-06-24 | D2S15 | 4.22 ± 0.10ab | 15.83 ± 0.08b | 17.12 ± 1.30a |
D5S15 | 4.58 ± 0.11a | 18.08 ± 0.27a | 15.52 ± 0.75a | |
D2S30 | 4.10 ± 0.16b | 16.33 ± 0.14b | 17.50 ± 1.00a | |
D5S30 | 4.52 ± 0.12a | 17.98 ± 0.13a | 15.92 ± 0.8a | |
2013-07-06 | D2S15 | 5.68 ± 0.52a | 18.05 ± 0.10c | 20.67 ± 1.43a |
D5S15 | 4.79 ± 0.16b | 19.83 ± 0.11a | 17.20 ± 1.05a | |
D2S30 | 4.58 ± 0.11b | 18.83 ± 0.08b | 19.02 ± 1.36a | |
D5S30 | 4.69 ± 0.20b | 19.73 ± 0.05a | 19.03 ± 0.80a | |
2013-07-22 | D2S15 | 8.10 ± 0.18a | 23.27 ± 0.24c | 26.68 ± 0.4a |
D5S15 | 6.00 ± 0.06b | 23.78 ± 0.07bc | 24.17 ± 0.21b | |
D2S30 | 6.29 ± 0.22b | 24.13 ± 0.26ab | 25.68 ± 0.43a | |
D5S30 | 5.37 ± 0.07c | 24.40 ± 0.20a | 22.72 ± 0.62c | |
2013-08-14 | D2S15 | 5.21 ± 0.22a | 20.43 ± 0.13a | 19.88 ± 1.53a |
D5S15 | 5.26 ± 0.20a | 20.48 ± 0.08a | 18.63 ± 0.88a | |
D2S30 | 5.38 ± 0.31a | 20.43 ± 0.13a | 19.47 ± 1.19a | |
D5S30 | 3.96 ± 0.09b | 20.72 ± 0.09a | 15.23 ± 0.65b | |
2013-09-15 | D2S15 | 3.31 ± 0.15a | 12.33 ± 0.29b | 14.10 ± 0.83ab |
D5S15 | 3.42 ± 0.11a | 14.83 ± 0.13a | 13.97 ± 0.43ab | |
D2S30 | 3.02 ± 0.13a | 11.55 ± 0.22c | 14.93 ± 1.3a | |
D5S30 | 3.17 ± 0.15a | 15.00 ± 0.17a | 11.77 ± 0.56b | |
2013-10-16 | D2S15 | 0.63 ± 0.03a | 7.65 ± 0.54b | 8.33 ± 0.42a |
D5S15 | 0.66 ± 0.02a | 8.28 ± 0.27ab | 6.90 ± 0.38b | |
D2S30 | 0.67 ± 0.02a | 9.12 ± 0.52a | 8.27 ± 0.41a | |
D5S30 | 0.60 ± 0.04a | 8.88 ± 0.31ab | 6.48 ± 0.17b |
图2 2013年生长季4个处理实验开展前底座内地上总生物量(pre-AGP)(A)和处理后底座内收获的地上净初级生产力总和(post-ANPP)(B)(平均值±标准误差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Results of ANOVAs for aboveground biomass before treatments (pre-AGP)(A), the aboveground net primary productivity (post-ANPP)(B) in the growing season of 2013 (mean ± SE). Different lowercase letters indicate significant difference among treatments (p < 0.05).
图3 不同底座处理下土壤呼吸速率(SR)与土壤温度(ST)之间的关系。D2S15表示不锈钢方形底座入土深度为2 cm, 边长15 cm, D5S15表示深度为5 cm, 边长15 cm, D2S30表示深度为2 cm, 边长30 cm, D5S30表示深度为5 cm, 边长30 cm。
Fig. 3 Relationship between soil respiration rate (SR) and soil temperature (ST) at 10 cm soil depth under different treatments. D and S denote the buried depth and length of the square soil collar, respectively. D2S15, D = 2 cm and S =15 cm; D5S15, D = 5 cm, S = 15 cm; D2S30, D = 2 cm, S = 30 cm; and D5S30, D = 5 cm, S = 30 cm.
图4 不同底座处理下土壤呼吸速率(SR)与土壤含水量(SWC)的关系。D2S15表示不锈钢方形底座入土深度为2 cm, 边长15 cm, D5S15表示深度为5 cm, 边长15 cm, D2S30表示深度为2 cm, 边长30 cm, D5S30表示深度为5 cm, 边长30 cm。
Fig. 4 Relationship between soil respiration rate (SR) and soil water content (SWC) at 10 cm soil depth under different treatments. D and S denote the buried depth and length of the square soil collar, respectively. D2S15, D = 2 cm and S =15 cm; D5S15, D = 5 cm, S = 15 cm; D2S30, D = 2 cm, S = 30 cm; and D5S30, D = 5 cm, S = 30 cm.
图5 不同底座处理下土壤呼吸速率(SR)与底座内地上净初级生产力(post-ANPP)之间的相关关系。D2S15表示不锈钢方形底座入土深度为2 cm, 边长15 cm, D5S15表示深度为5 cm, 边长15 cm, D2S30表示深度为2 cm, 边长30 cm, D5S30表示深度为5 cm, 边长30 cm。
Fig. 5 Relationships between soil respiration rate (SR) and aboveground net primary productively (post-ANPP) under different treatments. D and S denote the buried depth and length of the square soil collar, respectively. D2S15, D = 2 cm and S =15 cm; D5S15, D = 5 cm, S = 15 cm; D2S30, D = 2 cm, S = 30 cm; and D5S30, D = 5 cm, S = 30 cm.
图6 底座入土深度和底座面积对土壤呼吸速率影响的结构方程模型分析。模型模拟的结果为: χ2 = 0.89, p = 0.874 > 0.085, df = 5, RMSEA = 0.000 < 0.05, AGFI = 0.900 > 0.90, GFI = 0.975 > 0.90 (模型模拟的结果更合理)。其中, 黑色实线箭头表示显著的正相关路径(p < 0.05), 灰色实线箭头表示显著的负相关路径, 虚线箭头表示不显著的路径。箭头上的数字表示标准化路径系数。r2表示模型对该变量的解释度。RMSEA, 近似误差均方根; AGFI, 调整拟合优度指数; GFI, 拟合优度指数。**, p < 0.01; ***, p < 0.001。
Fig. 6 Structural equation modeling analysis for the effects of collar depth (D) and size (S) on soil respiration rate, via pathways of biotic and abiotic factors during the study period. Square boxes indicate variables included in the model. Results of model fitting: χ2 = 0.89, p = 0.874 > 0.085, df = 5, RMSEA = 0.000 < 0.05, AGFI = 0.900 > 0.90, GFI = 0.975 > 0.90 (which indicates a good fit of the model to the data). Black and gray solid arrows indicate significantly positive and negative effects, respectively and dashed arrows indicate insignificant effects (p > 0.05). Values associated with the arrows represent standardized path coefficients. R2 values associated with response variables indicate the proportion of variation explained by relationships with all other variables. RMSEA, root-mean-square error of approximation; AGFI, adjusted goodness-of-fit index; GFI, goodness-of-fit index. post-ANPP, post aboveground net primary productivity; SR, soil respiration; ST, soil temperature; SWC, soil water content. **, p < 0.01; ***, p < 0.001.
[1] |
Atkin OK, Edwards EJ, Loveys BR ( 2000). Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 147, 141-154.
DOI URL |
[2] |
Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno C, Drösler M, Williams M, Ammann C, Berninger F, Flechard C ( 2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11, 1352-1367.
DOI URL |
[3] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI |
[4] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL |
[5] |
Batjes NH ( 1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
DOI URL |
[6] |
Berry LJ, Norris W ( 1949). Studies of onion root respiration I. Velocity of oxygen consumption in different segments of root at different temperatures as a function of partial pressure of oxygen. Biochimica et Biophysica Acta, 3, 593-606.
DOI URL |
[7] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP ( 1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI |
[8] | Buchmann N ( 2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-1635. |
[9] | Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ ( 2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243. |
[10] |
Chen D, Zheng S, Shan Y, Taube F, Bai Y ( 2013). Vertebrate herbivore-induced changes in plants and soils: Linkages to ecosystem functioning in a semi-arid steppe. Functional Ecology, 27, 273-281.
DOI URL |
[11] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF ( 2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[12] |
Chen SP, Lin GH, Huang JH, Jenerette GD ( 2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450-2461.
DOI URL |
[13] |
Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho J ( 2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
DOI URL |
[14] |
Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GJ, Griffis T, Morgenstern K ( 2002). Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110, 299-317.
DOI URL |
[15] | Guenet B, Juarez S, Bardoux G, Abbadie L, Chenu C ( 2012). Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biology & Biochemistry, 52, 43-48. |
[16] |
Heinemeyer A, Di Bene C, Lloyd AR, Tortorella D, Baxter R, Huntley B, Gelsomino A, Ineson P ( 2011). Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. European Journal of Soil Science, 62, 82-94.
DOI URL |
[17] | Högberg P, Read DJ ( 2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21, 548-554. |
[18] |
Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke JA ( 2013). Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199, 339-351.
DOI URL |
[19] |
Hutchinson GL, Livingston GP ( 2001). Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. European Journal of Soil Science, 52, 675-682.
DOI URL |
[20] |
Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
DOI URL |
[21] | Kirschbaum MUF ( 2006). The temperature dependence of organic-matter decomposition—Still a topic of debate. Soil Biology & Biochemistry, 38, 2510-2518. |
[22] |
Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L ( 2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168.
DOI URL |
[23] | Kuzyakov Y ( 2010). Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[24] |
Kuzyakov Y, Cheng W ( 2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry, 33, 1915-1925.
DOI URL |
[25] | Li W, Cao WX, Liu HD, Li XL, Xu CL, Shi SL, Feng J, Zhou CM ( 2015). Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 24, 22-32. |
[26] |
Lloyd J, Taylor JA ( 1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[27] | Mikan CJ, Schimel JP, Doyle AP ( 2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34, 1785-1795. |
[28] |
Nay SM, Mattson KG, Bormann BT ( 1994). Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus. Ecology, 75, 2460-2463.
DOI URL |
[29] |
Ngao J, Longdoz B, Perrin D, Vincent G, Epron D, Le Dantec V, Soudani K, Aubinet M, Willm F, Granier A ( 2006). Cross-calibration functions for soil CO2 efflux measurement systems. Annals of Forest Science, 63, 477-484.
DOI URL |
[30] |
Raich JW, Potter CS, Bhagawati D ( 2002). Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8, 800-812.
DOI URL |
[31] |
Raich JW, Schlesinger WH ( 1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[32] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J ( 2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, 1104. |
[33] |
Schlesinger WH ( 1977). Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
DOI URL |
[34] |
Schlesinger WH, Andrews JA ( 2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[35] |
Subke JA, Inglima I, Francesca Cotrufo M ( 2006). Trends and methodological impacts in soil CO2 efflux partitioning: A meta analytical review. Global Change Biology, 12, 921-943.
DOI URL |
[36] | Subke JA, Moody CS, Hill TC, Voke N, Toet S, Ineson P, Teh Y ( 2018). Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil. Soil Biology & Biochemistry, 116, 323-332. |
[37] | Wan SQ, Luo YQ ( 2003). Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment. Global Biogeochemical Cycles, 17, 1054. DOI: 10.1029/2002GB001971. |
[38] |
Wang N, Yu FH, Li PX, He WM, Liu J, Yu GL, Song YB, Dong M ( 2009). Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biology, 11, 483-489.
DOI URL |
[39] |
Wang W, Fang JY ( 2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20-28.
DOI URL |
[40] |
Wang WJ, Zu YG, Wang HM, Hirano T, Takagi K, Sasa K, Koike T ( 2005). Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. Journal of Forest Research, 10, 57-60.
DOI URL |
[41] |
Wang Y, Liu H, Chung H, Yu L, Mi Z, Geng Y, Jing X, Wang S, Zeng H, Cao G, Zhao X, He JS ( 2014). Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland. Global Biogeochemical Cycles, 28, 1081-1095.
DOI URL |
[42] |
Ward SE, Smart SM, Quirk H, Tallowin JRB, Mortimer SR, Shiel RS, Wilby A, Bardgett RD ( 2016). Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 22, 2929-2938.
DOI URL |
[43] |
Widén B, Majdi H ( 2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: Seasonal and diurnal variation. Canadian Journal of Forest Research, 31, 786-796.
DOI URL |
[44] |
Xia JY, Niu SL, Wan SQ ( 2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556.
DOI URL |
[45] | Yan LM, Chen SQ, Huang JH, Lin GH ( 2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357. |
[46] |
Zhang XL, Tan YL, Zhang BW, Li A, Daryanto S, Wang LX, Huang JH ( 2017). The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe. Ecosphere, 8, e01655. DOI: 10.1002/ecs2.1655.
DOI URL |
[47] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Hosseinibai S ( 2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Global Change Biology, 23, 1167-1179.
DOI URL |
[48] | Zhou XH, Sherry RA, An Y, Wallace LL, Luo YQ ( 2006). Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles, 20, GB1003. DOI: 10.1029/2005GB002526. |
[49] | Zhou XH, Wan SQ, Luo YQ ( 2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[4] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[5] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[6] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[7] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[10] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[11] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[12] | 王晶苑, 魏杰, 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[13] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[14] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[15] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19