植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 379-392.DOI: 10.17521/cjpe.2024.0035 cstr: 32100.14.cjpe.2024.0035
所属专题: 生物多样性
收稿日期:
2024-02-02
接受日期:
2024-06-14
出版日期:
2025-03-20
发布日期:
2024-06-17
通讯作者:
* 蔡慧颖(caihy0606@126.com)基金资助:
LI Dong-Mei, SUN Long, HAN Yu, HU Tong-Xin, YANG Guang, CAI Hui-Ying*()
Received:
2024-02-02
Accepted:
2024-06-14
Online:
2025-03-20
Published:
2024-06-17
Contact:
* CAI Hui-Ying(caihy0606@126.com)Supported by:
摘要:
生物多样性在调节生态系统功能方面发挥着重要作用。火是森林生态系统中的重要干扰因子, 森林地上、地下生物多样性和生态系统功能会因火的作用发生显著变化。然而, 对于计划火烧后生物多样性如何影响森林生物量积累和养分可利用性等相关生态系统功能(即: 生态系统多功能性(EMF))的认识仍知之甚少。该研究选择了黑龙江省鹤岗市红旗林场2018年开展计划火烧的红松(Pinus koraiensis)人工林, 在火后4年林内环境趋于稳定时, 使用结构方程模型评估了计划火烧后林下植物多样性(物种多样性、功能多样性、效率性状和数量性状)和土壤微生物(真菌和细菌)多样性与EMF的关系, 发现计划火烧增加了林下植物多样性和EMF。植物多样性中数量性状(单位面积叶片总氮含量)和功能多样性(叶干物质含量的功能分散指数)与EMF均显著正相关, 地下微生物多样性对EMF的作用不显著。计划火烧对EMF变异的解释度最高(33.7%), 其次是数量性状(27.5%)和功能多样性(13.9%)。研究结果表明, 在红松人工林, 增加群落内林下植被的养分积累和植物性状的多样性是提高计划火烧后EMF的有效策略。在全球变化背景下的森林管理中, 计划火烧不仅是降低森林火险的有效方式, 同时也将对维护林下植被生物多样性和EMF起到积极作用。
李冬梅, 孙龙, 韩宇, 胡同欣, 杨光, 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响. 植物生态学报, 2025, 49(3): 379-392. DOI: 10.17521/cjpe.2024.0035
LI Dong-Mei, SUN Long, HAN Yu, HU Tong-Xin, YANG Guang, CAI Hui-Ying. Impact of prescribed burning on biodiversity and ecosystem multifunctionality of Pinus koraiensis plantation. Chinese Journal of Plant Ecology, 2025, 49(3): 379-392. DOI: 10.17521/cjpe.2024.0035
处理 Treatment | 海拔 Altitude (m) | 坡度 Slope (°) | 林龄 Forest age (a) | 平均树高 Mean tree height (m) | 平均胸径 Mean diameter at breast height (cm) |
---|---|---|---|---|---|
计划火烧样地 Prescribed burning plot | 215.0 | 19.0 | 59 | 10.5 | 26.5 |
对照样地 Control plot | 219.1 | 21.0 | 58 | 11.2 | 26.2 |
表1 黑龙江鹤岗红旗林场计划火烧实验研究样地的基本信息
Table 1 Basic information of the study plot of prescribed burning experiment in Hongqi Forest, Hegang, Heilongjiang
处理 Treatment | 海拔 Altitude (m) | 坡度 Slope (°) | 林龄 Forest age (a) | 平均树高 Mean tree height (m) | 平均胸径 Mean diameter at breast height (cm) |
---|---|---|---|---|---|
计划火烧样地 Prescribed burning plot | 215.0 | 19.0 | 59 | 10.5 | 26.5 |
对照样地 Control plot | 219.1 | 21.0 | 58 | 11.2 | 26.2 |
图2 计划火烧后林下植物多样性和土壤微生物多样性对生态系统多功能性影响的结构方程概念模型。括号中的数字表示每个假设路径的编号, 具体见表2。
Fig. 2 Structural equation model for the effects of understory plant diversity and soil microbial diversity on ecosystem multifunctionality after prescribed burning. Numbers in parentheses indicate the hypothetical path in Table 2. EMF, ecosystem multifunctionality.
路径序数 Pathway No. | 假设路径 Hypothesized pathway | 生态机制 Ecological mechanism |
---|---|---|
1 | 计划火烧→生态系统多功能性 Prescribed burning→ecosystem multifunctionality | 计划火烧影响森林生态系统的养分循环和能量流动, 改变林内生物的生存环境, 影响森林生态系统多功能性 Prescribed burning affects the nutrient cycling and energy flow in forest ecosystems, alters the within forest environment, and affects the multifunctionality of forest ecosystems |
2, 3, 5 | 计划火烧→数量性状、效率性状、功能/物种多样性 Prescribed burning→Traitquantity, Traitefficiency, functional/species diversity | 计划火烧改变植物的生存环境, 进而影响物种组成、功能多样性、植物数量性状和效率性状 Prescribed burning alters plant habitat, which in turn affects species composition, functional diversity, plant Traitquantity and Traitefficiency |
4 | 计划火烧→土壤微生物多样性 Prescribed burning→soil microbial diversity | 计划火烧改变土壤微生物群落的组成和结构, 影响土壤微生物多样性 Prescribed burning alters the composition and structure of soil microbial communities and affects soil microbial diversity |
6, 7, 8 | 数量性状、效率性状、功能/物种多样性→土壤微生物多样性 Traitquantity, Traitefficiency, functional/species diversity→soil microbial diversity | 植物属性(即数量性状、效率性状、功能多样性和物种多样性)可决定土壤微生物群落的多样性 Plant attributes (i.e., Traitquantity, Traitefficiency, functional diversity and species diversity) can affect the diversity of soil microbial communities |
9 | 数量性状→生态系统多功能性 Traitquantity→ecosystem multifunctionality | 单位土地面积的功能性状可以有效预测森林生态系统多功能性 Functional traits per unit area can be an effective predictor of forest ecosystem multifunctionality |
10 | 效率性状→生态系统多功能性 Traitefficiency→ecosystem multifunctionality | 根据选择效应, 群落加权功能性状可以促进森林生态系统多功能性 Community weighted functional traits can promote multifunctionality of forest ecosystems through selection effects |
11 | 土壤微生物多样性→生态系统多功能性 Soil microbial diversity→ecosystem multifunctionality | 土壤微生物多样性和土壤群落组成影响森林生态系统的多功能性 Soil microbial diversity and soil community composition affect the multifunctionality of forest ecosystems |
12 | 功能多样性/物种多样性→生态系统多功能性 Functional/species diversity→ecosystem multifunctionality | 植物功能多样性和物种多样性通过生态位互补效应促进森林生态系统多功能性 Plant functional diversity and species diversity promote multifunctionality of forest ecosystems through niche complementary effects |
表2 计划火烧后生物多样性对生态系统多功能性影响的结构方程概念模型中假设路径相关生态机制的简要描述
Table 2 A brief description of the ecological mechanisms associated with hypothetical pathways in a structural equation conceptual model of the impact of biodiversity on ecosystem multifunctionality following prescribed burning
路径序数 Pathway No. | 假设路径 Hypothesized pathway | 生态机制 Ecological mechanism |
---|---|---|
1 | 计划火烧→生态系统多功能性 Prescribed burning→ecosystem multifunctionality | 计划火烧影响森林生态系统的养分循环和能量流动, 改变林内生物的生存环境, 影响森林生态系统多功能性 Prescribed burning affects the nutrient cycling and energy flow in forest ecosystems, alters the within forest environment, and affects the multifunctionality of forest ecosystems |
2, 3, 5 | 计划火烧→数量性状、效率性状、功能/物种多样性 Prescribed burning→Traitquantity, Traitefficiency, functional/species diversity | 计划火烧改变植物的生存环境, 进而影响物种组成、功能多样性、植物数量性状和效率性状 Prescribed burning alters plant habitat, which in turn affects species composition, functional diversity, plant Traitquantity and Traitefficiency |
4 | 计划火烧→土壤微生物多样性 Prescribed burning→soil microbial diversity | 计划火烧改变土壤微生物群落的组成和结构, 影响土壤微生物多样性 Prescribed burning alters the composition and structure of soil microbial communities and affects soil microbial diversity |
6, 7, 8 | 数量性状、效率性状、功能/物种多样性→土壤微生物多样性 Traitquantity, Traitefficiency, functional/species diversity→soil microbial diversity | 植物属性(即数量性状、效率性状、功能多样性和物种多样性)可决定土壤微生物群落的多样性 Plant attributes (i.e., Traitquantity, Traitefficiency, functional diversity and species diversity) can affect the diversity of soil microbial communities |
9 | 数量性状→生态系统多功能性 Traitquantity→ecosystem multifunctionality | 单位土地面积的功能性状可以有效预测森林生态系统多功能性 Functional traits per unit area can be an effective predictor of forest ecosystem multifunctionality |
10 | 效率性状→生态系统多功能性 Traitefficiency→ecosystem multifunctionality | 根据选择效应, 群落加权功能性状可以促进森林生态系统多功能性 Community weighted functional traits can promote multifunctionality of forest ecosystems through selection effects |
11 | 土壤微生物多样性→生态系统多功能性 Soil microbial diversity→ecosystem multifunctionality | 土壤微生物多样性和土壤群落组成影响森林生态系统的多功能性 Soil microbial diversity and soil community composition affect the multifunctionality of forest ecosystems |
12 | 功能多样性/物种多样性→生态系统多功能性 Functional/species diversity→ecosystem multifunctionality | 植物功能多样性和物种多样性通过生态位互补效应促进森林生态系统多功能性 Plant functional diversity and species diversity promote multifunctionality of forest ecosystems through niche complementary effects |
生态系统功能 Ecosystem function | 单位 Unit | 对照样地 Control plot | 计划火烧样地 Prescribed burning plot |
---|---|---|---|
生态系统多功能性 EMF | - | 0.55 ± 0.06b | 0.74 ± 0.11a |
林下植被生物量 Understory biomass | g∙m-2 | 12.05 ± 4.08b | 22.52 ± 8.15a |
凋落物生物量 Litter mass | g∙m-2 | 198.93 ± 30.91b | 271.38 ± 71.99a |
土壤碳储量 Soil carbon storage | g∙m-2 | 0.27 ± 0.04a | 0.32 ± 0.06a |
土壤铵态氮含量 Soil NH4+-N content | mg∙kg-1 | 16.85 ± 3.83a | 17.63 ± 3.46a |
土壤硝态氮含量 Soil NO3--N content | mg∙kg-1 | 2.50 ± 0.78b | 3.84 ± 0.61a |
表3 计划火烧后红松人工林生态系统功能的变化(平均值±标准差)
Table 3 Changes of ecosystem functioning of Pinus koraiensis plantation after prescribed burning (mean ± SD)
生态系统功能 Ecosystem function | 单位 Unit | 对照样地 Control plot | 计划火烧样地 Prescribed burning plot |
---|---|---|---|
生态系统多功能性 EMF | - | 0.55 ± 0.06b | 0.74 ± 0.11a |
林下植被生物量 Understory biomass | g∙m-2 | 12.05 ± 4.08b | 22.52 ± 8.15a |
凋落物生物量 Litter mass | g∙m-2 | 198.93 ± 30.91b | 271.38 ± 71.99a |
土壤碳储量 Soil carbon storage | g∙m-2 | 0.27 ± 0.04a | 0.32 ± 0.06a |
土壤铵态氮含量 Soil NH4+-N content | mg∙kg-1 | 16.85 ± 3.83a | 17.63 ± 3.46a |
土壤硝态氮含量 Soil NO3--N content | mg∙kg-1 | 2.50 ± 0.78b | 3.84 ± 0.61a |
图3 红松人工林林下植物多样性(物种多样性、功能多样性、效率性状和数量性状)与生态系统多功能性(EMF)的相关性。CWMLDMC, 叶干物质含量的群落加权平均值; CWMLeaf-N, 叶片氮含量的群落加权平均值; CWMLeaf-P, 叶片磷含量的群落加权平均值; CWMMH, 最大株高的群落加权平均值; CWMSLA, 比叶面积的群落加权平均值; FDLDMC, 叶干物质含量的功能分散度指数; FDLeaf-N, 叶片氮含量的功能分散度指数; FDLeaf-P, 叶片磷含量的功能分散度指数; FDMH, 最大株高的功能分散度指数; FDSLA, 比叶面积的功能分散度指数; FDis, 功能离散度指数; FEve, 功能均匀度指数; FRic, 功能丰富度指数; LAI, 叶面积指数; LMI, 单位面积叶生物量; LNI, 单位面积叶总氮含量; LPI, 单位面积叶总磷含量; S, 物种丰富度; Shannon-Wiener, 香农-威纳指数; Simpson, 辛普森指数。
Fig. 3 Correlation between understory plant biodiversity (species diversity, functional diversity, Traitefficiency, Traitquantity) and ecosystem multifunctionality (EMF) in Pinus koraiensis plantation. CWM, community weighted mean; CWMLDMC, CWM of leaf dry matter content; CWMLeaf-N, CWM of leaf nitrogen content; CWMLeaf-P, CWM of leaf phosphorus content; CWMMH, CWM of maximum height; CWMSLA, CWM of specific leaf area; FDLDMC, FDis based on leaf dry matter content; FDLeaf-N, FDis based on leaf nitrogen content; FDLeaf-P, FDis based on leaf phosphorus content; FDMH, FDis based on maximum height; FDSLA, FDis based on specific leaf area; FDis, functional dispersion; FEve, functional evenness; FRic, functional richness; LAI, leaf area index; LMI, leaf mass index; LNI, total leaf nitrogen content per unit area; LPI, total leaf phosphorus content per unit area; S, species richness.
图4 红松人工林地下生物多样性与生态系统多功能性(EMF)的相关性。
Fig. 4 Correlation between belowground biodiversity and ecosystem multifunctionality in Pinus koraiensis plantation. EMF, ecosystem multifunctionality.
图5 计划火烧、林下植物多样性(功能多样性、数量性状、效率性状)和土壤微生物多样性与生态系统多功能性的结构方程模型。实线箭头代表有效路径(p < 0.05), 虚线箭头代表非有效路径(p > 0.05)。线上数字表示标准化路径系数(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。R2值代表每个变量解释的方差比例。CFI, 比较拟合指数; p, 显著性概率值; RMSEA, 渐进残差均方和平方根; SRMR, 标准均方根残差。
Fig. 5 Structural equation model for the effects of prescribed burning, understory plant diversity (functional diversity, Traitefficiency, Traitquantity) and soil microbial diversity on ecosystem multifunctionality (EMF). Solid arrows represent significant pathways (p < 0.05) and dashed arrows represent non-significant pathways (p > 0.05). The figures on lines are standardized path coefficients (*, p < 0.05; **, p < 0.01; ***, p < 0.001). R2 value represents the proportion of variance explained for each response variable. CFI, comparative fit index; p, probability of significance value; RMSEA, root mean square error of approximation; SRMR, standardized root mean square residual. CWMLeaf-N, community weighted mean of leaf nitrogen content; FDLDMC, functional dispersion based on leaf dry matter content; LNI, total leaf nitrogen content per unit area.
图6 计划火烧、林下植物多样性(功能多样性、数量性状、效率性状)和土壤微生物多样性对生态系统多功能性的直接和间接影响(A)及相对贡献(B)。A中深色条表示直接影响, 浅色条表示间接影响。B为直接影响与间接影响之和绝对值的百分比。
Fig. 6 Direct and indirect effects (A) and relative contributions (B) of prescribed burning, understory plant diversity (functional diversity, Traitefficiency, Traitquantity) and soil microbial diversity to ecosystem multifunctionality. Dark colored bars indicate direct effects and light-colored bars indicate indirect effects in A. B are percentages of the absolute value of the sum of direct and indirect effects.
[1] | Alcañiz M, Outeiro L, Francos M, Úbeda X (2018). Effects of prescribed fires on soil properties: a review. Science of the Total Environment, 613, 944-957. |
[2] | Andersson M, Michelsen A, Jensen M, Kjøller A (2004). Tropical savannah woodland: effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology & Biochemistry, 36, 849-858. |
[3] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
DOI PMID |
[4] | Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124. |
[5] | Carmona-Yáñez MD, Francos M, Miralles I, Soria R, Ahangarkolaee SS, Vafaie E, Zema DA, Lucas-Borja ME (2023). Short-term impacts of wildfire and post-fire mulching on ecosystem multifunctionality in a semi-arid pine forest. Forest Ecology and Management, 541, 121000. DOI: 10.1016/j.foreco.2023.121000. |
[6] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
PMID |
[7] | Eliott M, Lewis T, Venn T, Srivastava SK (2020). Planned and unplanned fire regimes on public land in south-east Queensland. International Journal of Wildland Fire, 29(5), 326-338. |
[8] | Fanin N, Gundale MJ, Farrell M, Ciobanu M, Baldock JA, Nilsson MC, Kardol P, Wardle DA (2018). Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology & Evolution, 2, 269-278. |
[9] | Fernández-Guisuraga JM, Marcos E, Sáenz de Miera LE, Ansola G, Pinto R, Calvo L (2023). Short-term responses of ecosystem multifunctionality to fire severity are modulated by fire-induced impacts on plant and soil microbial communities. Science of the Total Environment, 898, 165477. DOI: 10.1016/j.scitotenv.2023.165477. |
[10] |
Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI: 10.1038/ncomms2328.
PMID |
[11] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[12] | Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910. |
[13] | Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1, 132. DOI: 10.1038/s41559-017-0132. |
[14] | Guo H, Zhou XB, Tao Y, Yin JF, Zhang L, Guo X, Liu CH, Zhang YM (2023). Perennial herb diversity contributes more than annual herb diversity to multifunctionality in dryland ecosystems of North-western China. Frontiers in Plant Science, 14, 1099110. DOI: 10.3389/fpls.2023.1099110. |
[15] | He JS, Fang JY, Ma KP, Huang JH (2003). Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. |
[贺金生, 方精云, 马克平, 黄建辉 (2003). 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 27, 835-843.]
DOI |
|
[16] |
He M, Pan Y, Zhou G, Barry KE, Fu Y, Zhou X (2022). Grazing and global change factors differentially affect biodiversity-ecosystem functioning relationships in grassland ecosystems. Global Change Biology, 28, 5492-5504.
DOI PMID |
[17] | He N, Liu C, Piao S, Sack L, Xu L, Luo Y, He J, Han X, Zhou G, Zhou X, Lin Y, Yu Q, Liu S, Sun W, Niu S, Li S, Zhang J, Yu G (2019a). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200-210. |
[18] | He N, Yan P, Liu C, Xu L, Li M, van Meerbeek K, Zhou G, Zhou G, Liu S, Zhou X, Li S, Niu S, Han X, Buckley TN, Sack L, Yu G (2023). Predicting ecosystem productivity based on plant community traits. Trends in Plant Science, 28, 43-53. |
[19] | He T, Lamont BB (2018). Baptism by fire: the pivotal role of ancient conflagrations in evolution of the earth’s flora. National Science Review, 5, 237-254. |
[20] | He T, Lamont BB, Pausas JG (2019b). Fire as a key driver of earth’s biodiversity. Biological Reviews of the Cambridge Philosophical Society, 94, 1983-2010. |
[21] | Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35. |
[22] |
Huang XB, Lang XD, Li SF, Liu WD, Su JR (2021). Indicator selection and driving factors of ecosystem multifunctionality: research status and perspectives. Biodiversity Science, 29, 1673-1686.
DOI |
[黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣 (2021). 生态系统多功能性的指标选择与驱动因子: 研究现状与展望. 生物多样性, 29, 1673-1686.]
DOI |
|
[23] | Huang XB, Li SF, Su JR, Liu WD, Lang XD (2017). The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest. Biodiversity Science, 25, 1182-1191. |
[黄小波, 李帅锋, 苏建荣, 刘万德, 郎学东 (2017). 云南松天然次生林物种丰富度与生态系统多功能性的关系. 生物多样性, 25, 1182-1191.]
DOI |
|
[24] | Huerta S, Marcos E, Fernández-García V, Calvo L (2022). Short-term effects of burn severity on ecosystem multifunctionality in the northwest Iberian Peninsula. Science of the Total Environment, 844, 157193. DOI: 10.1016/j.scitotenv.2022.157193. |
[25] | Jiang F, Cadotte MW, Jin G (2022). Size-and environment- driven seedling survival and growth are mediated by leaf functional traits. Proceedings of the Royal Society B: Biological Sciences, 289, 20221400. DOI: 10.1098/rspb.2022.1400. |
[26] | Jing X, Muys B, Bruelheide H, Desie E, Hättenschwiler S, Jactel H, Jaroszewicz B, Kardol P, Ratcliffe S, Scherer-Lorenzen M, Selvi F, Vancampenhout K, van der Plas F, Verheyen K, Vesterdal L, et al.(2021). Above- and below-ground complementarity rather than selection drive tree diversity-productivity relationships in European forests. Functional Ecology, 35, 1756-1767. |
[27] | Keeley JE, Pausas JG (2019). Distinguishing disturbance from perturbations in fire-prone ecosystems. International Journal of Wildland Fire, 28, 282-287. |
[28] | Kong JJ, Yang J, Liu B, Qi L (2019). Wildfire alters spatial patterns of available soil nitrogen and understory environments in a valley boreal larch forest. Forests, 10, 95. DOI: 10.3390/f10020095. |
[29] | Li J, Delgado-Baquerizo M, Wang JT, Hu HW, Cai ZJ, Zhu YN, Singh BK (2019). Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology & Biochemistry, 136, 107526. DOI: 10.1016/j.soilbio.2019.107526. |
[30] |
Li JP, Zheng ZR, Xie HT, Zhao NX, Gao YB (2017). Heterogeneous microcommunities and ecosystem multifunctionality in seminatural grasslands under three management modes. Ecology and Evolution, 7, 14-25.
DOI PMID |
[31] | Li SF, Liu WD, Lang XD, Huang XB, Su JR (2021). Species richness, not abundance, drives ecosystem multifunctionality in a subtropical coniferous forest. Ecological Indicators, 120, 106911. DOI: 10.1016/j.ecolind.2020.106911. |
[32] | Li X, Wang H, Luan JW, Chang SX, Gao B, Wang Y, Liu SR (2022). Functional diversity dominates positive species mixture effects on ecosystem multifunctionality in subtropical plantations. Forest Ecosystems, 9, 100039. DOI: 10.1016/j.fecs.2022.100039. |
[33] | Lin BP, He ZM, Gao SL, Lin Y, Huang ZQ, Lin SZ (2016). Effects of fire disturbance on soil carbon and nitrogen pools in coastal sandy plantation forests. Chinese Journal of Applied and Environmental Biology, 22, 780-786. |
[林宝平, 何宗明, 郜士垒, 林宇, 黄志群, 林思祖 (2016). 林火干扰对滨海沙地人工林土壤碳氮库的影响. 应用与环境生物学报, 22, 780-786.] | |
[34] | Lin YJ, Wu N, Zhang YM (2018). Effect of fire on soil nutrient content and enzyme activity in Gurbantunggut desert. Acta Ecologica Sinica, 38, 6156-6162. |
[林亚军, 吴楠, 张元明 (2018). 火烧对古尔班通古特沙漠土壤养分和土壤酶活性的影响. 生态学报, 38, 6156-6162.] | |
[35] | Liu M, Wang CT, Zi HB, Hu L, Yang XZ, Yang YF (2016). Effects of fire disturbance on the functional diversity of soil microbial community in alpine meadows community in alpine meadow. Chinese Journal of Applied and Environmental Biology, 22, 263-270. |
[刘敏, 王长庭, 字洪标, 胡雷, 杨希智, 杨有芳 (2016). 火烧干扰下高寒草甸土壤微生物群落功能多样性变化特征. 应用与环境生物学报, 22, 263-270.] | |
[36] | Liu MX, Zhang GJ, Li L, Mu RL, Xu L, Yu RX (2022). Relationship between functional diversity and ecosystem multifunctionality of alpine meadow along an altitude gradient in Gannan, China. Chinese Journal of Applied Ecology, 33, 1291-1299. |
[刘旻霞, 张国娟, 李亮, 穆若兰, 徐璐, 于瑞新 (2022). 甘南高寒草甸海拔梯度上功能多样性与生态系统多功能的关系. 应用生态学报, 33, 1291-1299.]
DOI |
|
[37] | Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[38] |
Lucas-Borja ME, Delgado-Baquerizo M, Muñoz-Rojas M, Plaza-Álvarez PA, Gómez-Sanchez ME, González- Romero J, Peña-Molina E, Moya D,de las Heras J (2021). Changes in ecosystem properties after post-firemanagement strategies in wildfire-affected Mediterranean forests. Journal of Applied Ecology, 58, 836-846.
DOI |
[39] | Luo X, Wang YL, Zhang JQ (2018). Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xingʼan Mountains, Northeast China. Chinese Journal of Applied Ecology, 29, 713-724. |
[罗旭, 王聿丽, 张金荃 (2018). 气候变化和林火干扰对大兴安岭林区地上生物量影响的动态模拟. 应用生态学报, 29, 713-724.]
DOI |
|
[40] | Ma J, Bu RC, Liu M, Chang Y, Han FL, Qin Q, Hu YM (2016). Recovery of understory vegetation biomass and biodiversity in burned larch boreal forests in Northeastern China. Scandinavian Journal of Forest Research, 31, 382-393. |
[41] |
Ma XC, Geng QH, Zhang HG, Bian CY, Chen HYH, Jiang DL, Xu X (2021). Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytologist, 229, 2957-2969.
DOI PMID |
[42] | MacLean DA, Wein RW (1977). Changes in understory vegetation with increasing stand age in New Brunswick forests: species composition, cover, biomass, and nutrients. Canadian Journal of Botany, 55, 2818-2831. |
[43] | Muqaddas B, Lewis T (2020). Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia. Science of the Total Environment, 706, 136035. DOI: 10.1016/j.scitotenv.2019.136035. |
[44] | Ouyang S, Gou MM, Lei PF, Liu Y, Chen L, Deng XW, Zhao ZH, Zeng YL, Hu YT, Peng CH, Xiang WH (2023). Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests. Forest Ecosystems, 10, 100093. DOI: 10.1016/j.fecs.2023.100093. |
[45] | Petchey OL, Gaston KJ (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411. |
[46] | Schlapfer F, Schmid B (1999). Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecological Applications, 9, 893-912. |
[47] | Shu LF, Tian XR, Kou XJ (1998). Application and research of prescribed burning and controlled burning. Fire Safety Science, 7(3), 62-68. |
[舒立福, 田晓瑞, 寇晓军 (1998). 计划烧除的应用与研究. 火灾科学, 7(3), 62-68.] | |
[48] | Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, et al.(2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536, 456-459. |
[49] |
Steudel B, Hallmann C, Lorenz M, Abrahamczyk S, Prinz K, Herrfurth C, Feussner I, Martini JWR, Kessler M (2016). Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity. New Phytologist, 212, 409-420.
DOI PMID |
[50] |
Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
PMID |
[51] |
van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews of the Cambridge Philosophical Society, 94, 1220-1245.
DOI PMID |
[52] |
Villéger S, Mason NWH, Mouillot D (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI PMID |
[53] |
Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270.
DOI PMID |
[54] | Wang JQ, Zhang Y, Kang J, Cui XY (2023). Post-fire evolution of soil nitrogen in a Dahurian larch (Larix gmelinii) forest, Northeast China. Forests, 14, 1178. DOI:10.3390/f14061178. |
[55] |
Wen Z, Zheng H, Ouyang ZY (2020). Research progress on the relationship between biodiversity and ecosystem services. Chinese Journal of Applied Ecology, 31, 340-348.
DOI |
[文志, 郑华, 欧阳志云 (2020). 生物多样性与生态系统服务关系研究进展. 应用生态学报, 31, 340-348.]
DOI |
|
[56] | Xiong DP, Zhao GS, Wu JS, Shi PL, Zhang XZ (2016). The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 36, 3362-3371. |
[熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲 (2016). 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 36, 3362-3371.] | |
[57] |
Xu W, Jing X, Ma ZY, He JS (2016). A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84.
DOI |
[徐炜, 井新, 马志远, 贺金生 (2016). 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.]
DOI |
|
[58] |
Yan P, He N, Yu K, Xu L, van Meerbeek K (2023). Integrating multiple plant functional traits to predict ecosystem productivity. Communications Biology, 6, 239. DOI:10.1038/s42003-023-04626-3.
PMID |
[59] | Yin YL, Wang YQ, Li SX, Liu Y, Zhao W, Ma YS, Bao GS (2019). Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 30, 127-136. |
[尹亚丽, 王玉琴, 李世雄, 刘燕, 赵文, 马玉寿, 鲍根生 (2019). 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 30, 127-136.]
DOI |
|
[60] |
Yu H, Jiang S, Land KC (2015). Multicollinearity in hierarchical linear models. Social Science Research, 53, 118-136.
DOI PMID |
[61] |
Yuan Z, Ali A, Loreau M, Ding F, Liu S, Sanaei A, Zhou W, Ye J, Lin F, Fang S, Hao Z, Wang X,Le Bagousse- Pinguet Y (2021). Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biology, 27, 2883-2894.
DOI PMID |
[62] | Yuan Z, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang S, Zhang X, Li H, Hao Z, Wang X, Loreau M (2020). Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 108, 2012-2024. |
[63] | Zhang JH, Wang JY, Meng ZX, He J, Dong ZH, Liu KQ, Chen WQ (2022). Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow. Acta Ecologica Sinica, 42, 2542-2558. |
[张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青 (2022). 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性. 生态学报, 42, 2542-2558.] | |
[64] | Zhang R, Tian D, Chen HYH, Seabloom EW, Han G, Wang S, Yu G, Li Z, Niu S (2022). Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: a global meta-analysis. Global Ecology and Biogeography, 31, 155-167. |
[65] | Zhang YJ, Wu ZW, Gu XL, Fu JJ, Yan SJ (2018). Effects of fire severity and recovery time on organic carbon content of forest soil in Great Xing’an Mountains, China. Chinese Journal of Applied Ecology, 29, 2455-2462. |
[张宇婧, 吴志伟, 顾先丽, 付婧婧, 闫赛佳 (2018). 火烧强度和火后恢复时间对大兴安岭森林土壤有机碳含量的影响. 应用生态学报, 29, 2455-2462.]
DOI |
|
[66] | Zhou WC, Mu CC, Liu X, Gu H (2012). Effects of fire disturbance on litter mass and soil carbon storage of Betula platyphylla and Larix gmelinii-Carex schmidtii swamps in the Xiaoxingʼan Mountains of Northeast China. Acta Ecologica Sinica, 32, 6387-6395. |
[周文昌, 牟长城, 刘夏, 顾韩 (2012). 火干扰对小兴安岭白桦沼泽和落叶松-苔草沼泽凋落物和土壤碳储量的影响. 生态学报, 32, 6387-6395.] |
[1] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[2] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[3] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[4] | 黎松松, 王宁欣, 郑伟, 朱亚琼, 王祥, 马军, 朱进忠. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
[5] | 杨伟, 叶其刚, 李作洲, 黄宏文. 中华水韭残存居群的数量性状分化和地方适应性及其对保育遗传复壮策略的提示[J]. 植物生态学报, 2008, 32(1): 143-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19