植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 367-378.DOI: 10.17521/cjpe.2024.0170
• 研究论文 • 下一篇
收稿日期:
2024-05-22
接受日期:
2024-11-25
出版日期:
2025-03-20
发布日期:
2025-01-02
通讯作者:
* 贺强(he_qiang@hotmail.com)基金资助:
LIU Ying-Lin, LI Chun-Ming, WANG Hao, WU Chang-Lu, HE Qiang*()
Received:
2024-05-22
Accepted:
2024-11-25
Online:
2025-03-20
Published:
2025-01-02
Contact:
* HE Qiang(he_qiang@hotmail.com)Supported by:
摘要: 底栖微藻是滨海湿地的初级生产者之一, 为滨海湿地食物网提供了能量和物质基础, 在滨海湿地生态系统维持中发挥着重要作用。以往研究多聚焦于环境因子、维管植物和植食动物对底栖微藻的影响, 忽略了捕食动物对底栖微藻的营养级联效应。该研究以长江口滨海盐沼湿地为研究系统, 通过开展野外控制实验, 并在一年间对底栖微藻群落的生物量和种类组成分别进行月度和季度测定, 解析了水鸟对底栖微藻的营养级联效应。结果发现: (1)去除水鸟显著降低了底栖微藻的生物量。去除水鸟后, 虽然水鸟直接摄食作用的缺乏有利于底栖微藻, 但摄食微藻的蟹类的增多更强烈地抑制了底栖微藻。(2)去除蟹类(模拟水鸟高强度捕食)也显著降低了底栖微藻的生物量。去除蟹类后, 摄食藻类的螺类大幅增多。(3)去除水鸟和去除蟹类均显著降低了优势微藻类群硅藻的多度, 提高了底栖微藻群落的多样性。该研究表明滨海湿地水鸟可通过直接或间接作用对底栖微藻群落产生强烈的下行调控效应, 丰富了对滨海湿地微藻群落调控机制的理论认识。
刘盈麟, 李春明, 王昊, 武长路, 贺强. 长江口滨海湿地水鸟对底栖微藻群落的营养级联效应. 植物生态学报, 2025, 49(3): 367-378. DOI: 10.17521/cjpe.2024.0170
LIU Ying-Lin, LI Chun-Ming, WANG Hao, WU Chang-Lu, HE Qiang. Trophic cascades of waterbirds on benthic microalgal communities in coastal wetlands in the Yangtze estuary. Chinese Journal of Plant Ecology, 2025, 49(3): 367-378. DOI: 10.17521/cjpe.2024.0170
图1 不同实验处理中底栖微藻的生物量(以叶绿素a含量表征) (平均值±标准误)。同一月份中, 不同小写字母表示不同处理间具有统计学差异(p < 0.05)。季节通过不同背景颜色间隔。
Fig. 1 Biomass (given as chlorophyll a content) of benthic microalgae in different experimental treatments (mean ± SE). Within a month, different lowercase letters indicate statistical differences between different treatments (p < 0.05). Seasons are separated by shadings of different colors.
响应变量 Response variable | 种植+水鸟去除 Planting + waterbird exclusion | 种植+蟹类去除 Planting + crab exclusion | 种植 Planting | 空白对照 Control | p (Tr) | p (Ti) | p (Tr × Ti) |
---|---|---|---|---|---|---|---|
水鸟足迹 Waterbird tracks | 3.50 ± 2.17b | 0.17 ± 0.33c | 170.17 ± 45.24a | 165.63 ± 49.42a | <0.000 1 | <0.000 1 | <0.000 1 |
蟹洞 Crab burrows | 26.80 ± 2.98a | 0.38 ± 0.32c | 13.54 ± 1.77b | 13.25 ± 1.53b | <0.000 1 | 0.000 3 | 0.220 0 |
拟沼螺 Assiminea sp. | 4.92 ± 1.49b | 30.25 ± 6.89a | 2.79 ± 0.82b | 3.50 ± 1.40b | <0.000 1 | 0.008 5 | 0.001 6 |
拟蟹守螺 Cerithidea sp. | 3.42 ± 1.21b | 17.54 ± 5.81a | 2.00 ± 0.58b | 2.38 ± 0.83b | <0.000 1 | <0.000 1 | 0.015 6 |
表1 不同实验处理中水鸟足迹、蟹类、螺类的多度(平均值±标准误)
Table 1 Abundances of waterbird tracks, crab burrows, and snails in different experimental treatments (mean ± SE)
响应变量 Response variable | 种植+水鸟去除 Planting + waterbird exclusion | 种植+蟹类去除 Planting + crab exclusion | 种植 Planting | 空白对照 Control | p (Tr) | p (Ti) | p (Tr × Ti) |
---|---|---|---|---|---|---|---|
水鸟足迹 Waterbird tracks | 3.50 ± 2.17b | 0.17 ± 0.33c | 170.17 ± 45.24a | 165.63 ± 49.42a | <0.000 1 | <0.000 1 | <0.000 1 |
蟹洞 Crab burrows | 26.80 ± 2.98a | 0.38 ± 0.32c | 13.54 ± 1.77b | 13.25 ± 1.53b | <0.000 1 | 0.000 3 | 0.220 0 |
拟沼螺 Assiminea sp. | 4.92 ± 1.49b | 30.25 ± 6.89a | 2.79 ± 0.82b | 3.50 ± 1.40b | <0.000 1 | 0.008 5 | 0.001 6 |
拟蟹守螺 Cerithidea sp. | 3.42 ± 1.21b | 17.54 ± 5.81a | 2.00 ± 0.58b | 2.38 ± 0.83b | <0.000 1 | <0.000 1 | 0.015 6 |
图2 底栖微藻生物量(叶绿素a含量表征)与不同动物消费者多度的关系。A, 水鸟足迹(子图为不包含种植+水鸟去除和种植+蟹类去除处理的分析结果)。B, 蟹类(子图为不包含种植+蟹类去除处理的分析结果)。C, 拟沼螺。D, 拟蟹守螺。p为线性混合效应模型的显著性, R2为模型对因变量的解释率, 灰色区域为95%置信区间。
Fig. 2 Relationships between the biomass of benthic microalgae (given as chlorophyll a content) and the abundances of different animal consumers. A, Waterbird tracks (the inset shows the results without planting + waterbird exclusion and planting + crab exclusion treatments). B, Crabs (the inset shows the results without planting + crab exclusion treatments). C, Assiminea sp. D, Cerithidea sp. p indicates the statistical significance of a linear mixed-effects model, and R2 is the proportion of variation in the dependent variable explained by the model, the gray areas are 95% confidence intervals.
图3 水鸟调控底栖微藻生物量的结构方程模型分析。A, 假设模型。B, 统计模型。路径对应的数字为路径系数; *, p < 0.05; **, p < 0.01; ***, p < 0.001; R2为路径的拟合度。
Fig. 3 Structural equation modeling of the effects of waterbirds on the biomass of benthic microalgae. A, Hypothetical model. B, Statistical model. The numbers corresponding to paths are path coefficients; *, p < 0.05; **, p < 0.01; ***, p < 0.001; R2 is the fit of the path.
图4 底栖微藻平均相对多度在不同实验处理间的差异(平均值±标准误)。A, 门分类水平。B, 属分类水平(仅展示多度占比大于1%的门或属; <1%的归为其他)。对于同一个门或属, 不同小写字母表示不同处理间具有显著差异(p < 0.05)。
Fig. 4 Differences in the mean relative abundance (%) of benthic microalgae among different experimental treatments (mean ± SE). A, Phylum level. B, Genus level (only for phyla and genera with an abundance percentage greater than 1%; those < 1% are shown as others). Within a phylum or genus, different lowercase letters indicate significant differences between treatments (p < 0.05).
图5 不同实验处理中底栖藻类群落的非度量多维尺度分析(NMDS) (属分类水平)。椭圆代表95%置信限, stress为低维空间中样本间的相对距离与原始数据中相对距离之间的差异; 通常认为, 当stress < 0.2时, 模型拟合效果可接受。
Fig. 5 Non-metric multidimensional scaling (NMDS) analysis for the genus-level composition of benthic microalgal communities in different experimental treatments. Ellipses indicate 95% confidence limit. Stress indicates the difference between the relative distances of samples in the lower-dimensional space and those in the original high-dimensional data; when stress is <0.2, it is generally considered that the model fit is acceptable.
图6 不同季节不同实验处理中底栖微藻群落的多样性指数(平均值±标准误)。同一季节中, 不同小写字母表示不同实验处理间具有显著差异(p < 0.05)。
Fig. 6 Diversity indices of benthic microalgae communities in different experimental treatments in different seasons (mean ± SE). Within a season, different lowercase letters indicate significant differences between treatments (p < 0.05).
[1] | Armitage AR, Fong P (2006). Predation and physical disturbance by crabs reduce the relative impacts of nutrients in a tidal mudflat. Marine Ecology Progress Series, 313, 205-213. |
[2] | Booty JM, Underwood GJC, Parris A, Davies RG, Tolhurst TJ (2020). Shorebirds affect ecosystem functioning on an intertidal mudflat. Frontiers in Marine Science, 7, 685. DOI: 10.3389/fmars.2020.00685. |
[3] | Chen JS, Li CM, Wu CL, Sun XN, Feng XS, Zhao JY, Ma ZJ, Wu JH, Bertness MD, Li B, He Q (2023). Top-down control of macrofauna: Are waterbirds passengers or drivers in wetlands? Biological Conservation, 279, 109903. DOI: 10.1016/j.biocon.2023.109903. |
[4] |
Christianen MJA, Middelburg JJ, Holthuijsen SJ, Jouta J, Compton TJ, van der Heide T, Piersma T, Sinninghe Damsté JS, van der Veer HW, Schouten S, Olff H (2017). Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale. Ecology, 98, 1498-1512.
DOI PMID |
[5] | Como S, Lefrancois C, Maggi E, Antognarelli F, Dupuy C (2014). Behavioral responses of juvenile golden gray mullet Liza aurata to changes in coastal temperatures and consequences for benthic food resources. Journal of Sea Research, 92, 66-73. |
[6] | Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Raskin RG, Sutton P, Belt M (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. |
[7] | Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995). Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology, 33, 1-149. |
[8] | Hope JA, Paterson DM, Thrush SF (2020). The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. Journal of Ecology, 108, 815-830. |
[9] |
Jia SH, Wang XG, Yuan ZQ, Lin F, Ye J, Hao ZQ, Luskin MS (2018). Global signal of top-down control of terrestrial plant communities by herbivores. Proceedings of the National Academy of Sciences of the United States of America, 115, 6237-6242.
DOI PMID |
[10] | Jin M, Ye BB, Pang Y, Chu ZS, Yang Q (2016). Study on Margarya melanioides’ feeding characteristics towards four attached algae and its potential restoration in Erhai basin. Acta Ecologica Sinica, 36, 518-524. |
[靳明, 叶碧碧, 庞燕, 储昭升, 杨琦 (2016). 濒危种螺蛳对4种藻摄食特性及其在洱海流域恢复的可行性探讨. 生态学报, 36, 518-524.] | |
[11] | Johnson DS, Martínez-Soto KS, Pant M, Wittyngham SS, Goetz EM (2020). The fiddler crab Minuca pugnax (Smith, 1870) (Decapoda: Brachyura: Ocypodidae) reduces saltmarsh algae in its expanded range. Journal of Crustacean Biology, 40, 668-672. |
[12] |
Kuwae T, Miyoshi E, Hosokawa S, Ichimi K, Hosoya J, Amano T, Moriya T, Kondoh M, Ydenberg RC, Elner RW (2012). Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm. Ecology Letters, 15, 347-356.
DOI PMID |
[13] | Li B, Liao CZ, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009). Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecological Engineering, 35, 511-520. |
[14] |
Li CM, Chen JS, Liao XL, Ramus AP, Angelini C, Liu LL, Silliman BR, Bertness MD, He Q (2023). Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nature Communications, 14, 8076. DOI: 10.1038/s41467-023-43951-3.
PMID |
[15] | Longphuirt SN, Lim JH, Leynaert A, Claquin P, Choy EJ, Kang CK, An S (2009). Dissolved inorganic nitrogen uptake by intertidal microphytobenthos: nutrient concentrations, light availability and migration. Marine Ecology Progress Series, 379, 33-44. |
[16] |
Ma ZJ, Wang Y, Gan XJ, Li B, Cai YT, Chen JK (2009). Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River estuary, China. Environmental Management, 43, 1187-1200.
DOI PMID |
[17] | Miller DC, Geider RJ, MacIntyre HL (1996). Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. role in sediment stability and shallow-water food webs. Estuaries, 19, 202-212. |
[18] | Ning XR, Liu ZL, Cai YM (1999). Standing crop and productivity of the benthic microflora living on tidal flats of the Xiangshan Bay. Acta Oceanologica Sinica, 21(3), 98-105. |
[宁修仁, 刘子琳, 蔡昱明 (1999). 象山港潮滩底栖微型藻类现存量和初级生产力. 海洋学报, 21(3), 98-105.] | |
[19] | Park HJ, Choy EJ, Kang CK (2013). Spatial and temporal variations of microphytobenthos on the common reed Phragmites australis bed in a marine protected area of Yeoja Bay, Korea. Wetlands, 33, 737-745. |
[20] | Pinckney JL (2018). A mini-review of the contribution of benthic microalgae to the ecology of the continental shelf in the South Atlantic Bight. Estuaries and Coasts, 41, 2070-2078. |
[21] | Plante CJ, Hill-Spanik K, Cook M, Graham C (2021). Environmental and spatial influences on biogeography and community structure of saltmarsh benthic diatoms. Estuaries and Coasts, 44, 147-161. |
[22] |
Poore AGB, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, Emmett Duffy J (2012). Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 15, 912-922.
DOI PMID |
[23] | Quan WM (2007). Food Web of Analysis of Salt Marshes of the Yangtze River Estuary by Using Stable Isotopes. PhD dissertation, Fudan University, Shanghai. 1-121. |
[全为民 (2007). 长江口盐沼湿地食物网的初步研究: 稳定同位素分析. 博士学位论文, 复旦大学, 上海. 1-121.] | |
[24] | Ripple WJ, Estes JA, Schmitz OJ, Constant V, Kaylor MJ, Lenz A, Motley JL, Self KE, Taylor DS, Wolf C (2016). What is a trophic cascade? Trends in Ecology & Evolution, 31, 842-849. |
[25] | Sawai Y, Horton BP, Kemp AC, Hawkes AD, Nagumo T, Nelson AR (2016). Relationships between diatoms and tidal environments in Oregon and Washington, USA. Diatom Research, 31, 17-38. |
[26] | Shang X, Guan WB, Zhang J (2009). Distribution characteristics and contribution to total primary production of microphotobenthos in the salt marshes of the Changjiang Estuary. Haiyang Xuebao, 31(5), 40-47. |
[商栩, 管卫兵, 张经 (2009). 长江口盐沼湿地底栖微藻的分布特征及其对有机质产出的贡献. 海洋学报(中文版), 31(5), 40-47.] | |
[27] | Shniukova EI, Zolotareva EK (2015). Diatom exopolysaccharides: a review. International Journal on Algae, 17, 50-67. |
[28] |
Silliman BR, Bertness MD (2002). A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences of the United States of America, 99, 10500-10505.
PMID |
[29] |
Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang XX, Labeeuw L, Jiang YL, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018). Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem, 11, 334-355.
DOI PMID |
[30] | Wang SS (2019). The Spatial and Temporal variations of Benthic Diatom Communities in Different Estuarine Mudflats. Master degree dissertation, University of Chinese Academy of Sciences, Beijing. 1-102. |
[王珊珊 (2019). 河口泥滩底栖硅藻群落结构时空变化特征的比较研究. 硕士学位论文, 中国科学院大学, 北京. 1-102.] | |
[31] | Wang Y, Liu GZ, Yu GX, Yang XL, Cao LQ, Liu Q (2023). Ecological relationship among mudflat crab (Helice tientsinensis), microphytobenthos and salt marsh plant Suaeda heteroptera inhabiting red beach. Transactions of Oceanology and Limnology, 45, 138-145. |
[汪炎, 柳圭泽, 于国欣, 杨晓龙, 曹林泉, 刘青 (2023). 天津厚蟹和红海滩底栖微藻及翅碱蓬的生态关系. 海洋湖沼通报, 45, 138-145.]
DOI |
|
[32] |
Weerman EJ, Herman PMJ, van de Koppel J (2011). Top-down control inhibits spatial self-organization of a patterned landscape. Ecology, 92, 487-495.
PMID |
[33] |
Whitcraft CR, Levin LA (2007). Regulation of benthic algal and animal communities by salt marsh plants: impact of shading. Ecology, 88, 904-917.
PMID |
[34] |
Xu CL, Silliman BR, Chen JS, Li XC, Thomsen MS, Zhang Q, Lee J, Lefcheck JS, Daleo P, Hughes BB, Jones HP, Wang R, Wang SP, Smith CS, Xi XQ, et al.(2023). Herbivory limits success of vegetation restoration globally. Science, 382, 589-594.
DOI PMID |
[35] | Yan X, Li WJ, Dong H, Zhou X, Zhong KJ, Zhou HK, Ka ZCR, Gu ZH, Jie NDCR, Qi JL, Wu YH, Cai RDZ (2022). Top-down and bottom-up effects on grassland plant productivity and diversity: a review. Journal of Lanzhou University (Natural Sciences), 58, 275-284. |
[颜熙, 李文金, 董欢, 周喜, 忠克吉, 周华坤, 卡着才让, 顾智辉, 解乃达才让, 祁金兰, 武殷红, 才让东周 (2022). 下行和上行效应对草地植物生产力和多样性影响的研究进展. 兰州大学学报(自然科学版), 58, 275-284.] | |
[36] | Yoon TH, Kang HE, Kang CK, Lee SH, Ahn DH, Park H, Kim HW (2016). Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ, 4, e2115. DOI: 10.7717/peerj.2115. |
[37] | Zhang X (2012). Food Sources and Diet Composition of Calidris Shorebirds at Chongming Dongtan. Master degree dissertation, Fudan University, Shanghai. |
[张璇 (2012). 崇明东滩滨鹬类的食物组成及食物来源. 硕士学位论文, 复旦大学, 上海.] | |
[38] | Zhang XD (2012). The Effects of Smooth Cordgrass and Crab Bioturbation on Plant Interspecific Relationship and Biogeochemistry in a Salt Marsh in the Yangtze Estuary. PhD dissertation, Fudan University, Shanghai. 1-156. |
[张骁栋 (2012). 互花米草与蟹类扰动对崇明东滩植物种间关系及生地化循环的影响. 博士学位论文, 复旦大学, 上海. 1-156.] | |
[39] | Zhang Y, Tong CF (2018). Stomach content characteristics and feeding preference of Chiromantes dehaani in the salt marsh of Yangtze estuary. Chinese Journal of Ecology, 37, 2059-2066. |
[张元, 童春富 (2018). 长江口盐沼湿地无齿螳臂相手蟹(Chiromantes dehaani)胃含物特征与取食偏好. 生态学杂志, 37, 2059-2066.] |
[1] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[2] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[3] | 吴曼, 李娟娟, 刘金铭, 任安芝, 高玉葆. 刈割干扰和养分添加条件下Epichloë内生真菌感染对羽茅所在群落多样性和生产力的影响[J]. 植物生态学报, 2019, 43(2): 85-93. |
[4] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[5] | 吴则焰,林文雄,陈志芳,方长旬,张志兴,吴林坤,周明明,陈婷. 中亚热带森林土壤微生物群落多样性随海拔梯度的变化[J]. 植物生态学报, 2013, 37(5): 397-406. |
[6] | 邹媛媛, 刘琳, 刘洋, 赵亮, 邓启云, 吴俊, 庄文, 宋未. 不同水稻品种种子固有细菌群落的多样性[J]. 植物生态学报, 2012, 36(8): 880-890. |
[7] | 汲玉河, 周广胜. 1988-2006年辽河三角洲植被结构的变化[J]. 植物生态学报, 2010, 34(4): 359-367. |
[8] | 吴统贵, 吴明, 刘丽, 萧江华. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010, 34(1): 23-28. |
[9] | 梁存柱, 朱宗元, 王炜, 裴浩, 张韬, 王永利. 贺兰山植物群落类型多样性及其空间分异[J]. 植物生态学报, 2004, 28(3): 361-368. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 208
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La