植物生态学报 ›› 2013, Vol. 37 ›› Issue (5): 397-406.DOI: 10.3724/SP.J.1258.2013.00041
吴则焰1,2,林文雄2,*(),陈志芳3,方长旬2,张志兴2,吴林坤2,周明明2,陈婷2
出版日期:
2013-05-01
发布日期:
2013-05-16
通讯作者:
林文雄
基金资助:
WU Ze-Yan1,2,LIN Wen-Xiong2,*(),CHEN Zhi-Fang3,FANG Chang-Xun2,ZHANG Zhi-Xing2,WU Lin-Kun2,ZHOU Ming-Ming2,CHEN Ting2
Online:
2013-05-01
Published:
2013-05-16
Contact:
LIN Wen-Xiong
摘要:
运用Biolog EcoPlate技术, 对武夷山不同海拔植被带(常绿阔叶林(EBF)、针叶林(CF)、亚高山矮林(DF)、高山草甸(AM))土壤微生物群落多样性差异进行了研究。结果表明: 不同海拔植被带土壤微生物群落功能多样性差异显著。土壤平均颜色变化率(AWCD)随培养时间延长而逐渐增加, 同一深度土层的AWCD值随海拔升高而逐渐降低, 大小顺序依次为EFB > CF > DF > AM。同一海拔植被带, 不同深度土层的AWCD值总体趋势依次为0-10 cm > 10-25 cm > 25-40 cm。土壤微生物群落Simpson指数、Shannon-Wiener指数、丰富度指数和McIntosh指数的总体趋势为EBF最高, CF和DF次之, AM最低。不同海拔植被带土壤微生物对不同碳源利用强度存在较大差异, 其中EBF利用率最高, AM利用率最低, 碳水化合物和羧酸类碳源是各海拔植被带土壤微生物的主要碳源。主成分分析结果表明, 从31个因素中提取的与碳源利用相关的主成分1、主成分2分别能解释变量方差的75.27%和16.14%, 在主成分分离中起主要贡献作用的是胺类和氨基酸类碳源。土壤微生物群落多样性随着海拔上升、土层加深而逐渐下降的原因, 可能是生物量、林分凋落物、土壤养分、微小动物、植物根系等多种因素共同作用的结果。
吴则焰,林文雄,陈志芳,方长旬,张志兴,吴林坤,周明明,陈婷. 中亚热带森林土壤微生物群落多样性随海拔梯度的变化[J]. 植物生态学报, 2013, 37(5): 397-406.
WU Ze-Yan,LIN Wen-Xiong,CHEN Zhi-Fang,FANG Chang-Xun,ZHANG Zhi-Xing,WU Lin-Kun,ZHOU Ming-Ming,CHEN Ting. Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest[J]. Chin J Plant Ecol, 2013, 37(5): 397-406.
植被类型 Vegetation type | 土壤深度 Soil depth | pH | 含水率 Water content (%) | 总有机碳 TOC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) |
---|---|---|---|---|---|---|---|
常绿阔叶林 Evergreen broad- leaved forest (EBF) | 0-10 cm | 4.32 ± 0.03h | 39.3 ± 0.35a | 148.23 ± 1.50a | 0.76 ± 0.04a | 0.28 ± 0.01a | 20.68 ± 1.02a |
10-25 cm | 4.47 ± 0.05fg | 37.2 ± 0.25b | 132.19 ± 3.13b | 0.69 ± 0.02ab | 0.21 ± 0.03b | 17.34 ± 0.98b | |
25-40 cm | 4.78 ± 0.06b | 35.7 ± 0.31d | 109.76 ± 2.85e | 0.60 ± 0.05c | 0.17 ± 0.04cd | 15.29 ± 1.23c | |
针叶林 Coniferous forest (CF) | 0-10 cm | 4.42 ± 0.02g | 36.8 ± 0.40c | 130.43 ± 2.50c | 0.67 ± 0.03b | 0.20 ± 0.03bc | 17.43 ± 1.42b |
10-25 cm | 4.39 ± 0.05h | 34.1 ± 0.38e | 119.67 ± 3.41d | 0.44 ± 0.05def | 0.17 ± 0.03cd | 14.87 ± 1.04c | |
25-40 cm | 4.67 ± 0.03cd | 32.9 ± 0.46f | 101.94 ± 4.69f | 0.41 ± 0.05de | 0.15 ± 0.01de | 11.26 ± 0.94e | |
亚高山矮林 Dwarf forest (DF) | 0-10 cm | 4.50 ± 0.03e | 37.0 ± 0.06b | 120.18 ± 5.52d | 0.49 ± 0.04d | 0.19 ± 0.02bc | 13.25 ± 0.56d |
10-25 cm | 4.63 ± 0.03d | 34.8 ± 0.01e | 107.23 ± 1.91f | 0.37 ± 0.02fgh | 0.14 ± 0.01def | 10.11 ± 0.54ef | |
25-40 cm | 4.88 ± 0.05a | 31.8 ± 0.10g | 89.23 ± 1.97g | 0.31 ± 0.04gh | 0.11 ± 0.01fgh | 10.56 ± 0.85ef | |
高山草甸 Alpine meadow (AM) | 0-10 cm | 4.46 ± 0.04ef | 29.4 ± 0.15h | 90.54 ± 0.91g | 0.39 ± 0.03efg | 0.13 ± 0.01efg | 12.90 ± 1.21d |
10-25 cm | 4.51 ± 0.01e | 24.7 ± 0.10i | 81.21 ± 2.19h | 0.28 ± 0.04h | 0.09 ± 0.01h | 10.17 ± 0.45ef | |
25-40 cm | 4.74 ± 0.02bc | 22.5 ± 0.36j | 56.78 ± 1.78i | 0.21 ± 0.06i | 0.10 ± 0.01gh | 9.22 ± 0.39f |
表1 不同海拔梯度植被带土壤部分理化性质(平均值±标准偏差)
Table 1 Soil physical-chemical properties in different vegetation belts along an elevation gradient (mean ± SD)
植被类型 Vegetation type | 土壤深度 Soil depth | pH | 含水率 Water content (%) | 总有机碳 TOC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) |
---|---|---|---|---|---|---|---|
常绿阔叶林 Evergreen broad- leaved forest (EBF) | 0-10 cm | 4.32 ± 0.03h | 39.3 ± 0.35a | 148.23 ± 1.50a | 0.76 ± 0.04a | 0.28 ± 0.01a | 20.68 ± 1.02a |
10-25 cm | 4.47 ± 0.05fg | 37.2 ± 0.25b | 132.19 ± 3.13b | 0.69 ± 0.02ab | 0.21 ± 0.03b | 17.34 ± 0.98b | |
25-40 cm | 4.78 ± 0.06b | 35.7 ± 0.31d | 109.76 ± 2.85e | 0.60 ± 0.05c | 0.17 ± 0.04cd | 15.29 ± 1.23c | |
针叶林 Coniferous forest (CF) | 0-10 cm | 4.42 ± 0.02g | 36.8 ± 0.40c | 130.43 ± 2.50c | 0.67 ± 0.03b | 0.20 ± 0.03bc | 17.43 ± 1.42b |
10-25 cm | 4.39 ± 0.05h | 34.1 ± 0.38e | 119.67 ± 3.41d | 0.44 ± 0.05def | 0.17 ± 0.03cd | 14.87 ± 1.04c | |
25-40 cm | 4.67 ± 0.03cd | 32.9 ± 0.46f | 101.94 ± 4.69f | 0.41 ± 0.05de | 0.15 ± 0.01de | 11.26 ± 0.94e | |
亚高山矮林 Dwarf forest (DF) | 0-10 cm | 4.50 ± 0.03e | 37.0 ± 0.06b | 120.18 ± 5.52d | 0.49 ± 0.04d | 0.19 ± 0.02bc | 13.25 ± 0.56d |
10-25 cm | 4.63 ± 0.03d | 34.8 ± 0.01e | 107.23 ± 1.91f | 0.37 ± 0.02fgh | 0.14 ± 0.01def | 10.11 ± 0.54ef | |
25-40 cm | 4.88 ± 0.05a | 31.8 ± 0.10g | 89.23 ± 1.97g | 0.31 ± 0.04gh | 0.11 ± 0.01fgh | 10.56 ± 0.85ef | |
高山草甸 Alpine meadow (AM) | 0-10 cm | 4.46 ± 0.04ef | 29.4 ± 0.15h | 90.54 ± 0.91g | 0.39 ± 0.03efg | 0.13 ± 0.01efg | 12.90 ± 1.21d |
10-25 cm | 4.51 ± 0.01e | 24.7 ± 0.10i | 81.21 ± 2.19h | 0.28 ± 0.04h | 0.09 ± 0.01h | 10.17 ± 0.45ef | |
25-40 cm | 4.74 ± 0.02bc | 22.5 ± 0.36j | 56.78 ± 1.78i | 0.21 ± 0.06i | 0.10 ± 0.01gh | 9.22 ± 0.39f |
图1 不同植被带和土壤深度(A, 0-10 cm土层; B, 10-25 cm土层; C, 25-40 cm土层)土壤微生物群落的平均颜色变化率随时间的变化。AM, 高山草甸; CF, 针叶林; DF, 亚高山矮林; EBF, 常绿阔叶林。
Fig. 1 Changes of soil average well color development of soil microbe community with time in different vegetation belts and soil depths (A, 0-10 cm soil layer; B, 10-25 cm soil layer; C, 25-40 cm soil layer). AM, alpine meadow; CF, coniferous forest; DF, dwarf forest; EBF, evergreen broad-leaved forest.
植被类型 Vegetation type | 土壤深度 Soil depth | 氨基酸类 Amino acid | 碳水化合物类Carbohydrate | 羧酸类Carboxylic acid | 聚合物类Polymer | 胺类 Amine | 酚酸类 Phenolic acid |
---|---|---|---|---|---|---|---|
常绿阔叶林Evergreen broad-leaved forest (EBF) | 0-10 cm | 0.67 ± 0.04a | 1.23 ± 0.07a | 1.28 ± 0.04a | 0.57 ± 0.01a | 0.21 ± 0.03a | 0.74 ± 0.12a |
10-25 cm | 0.60 ± 0.02ab | 1.19 ± 0.08ab | 1.02 ± 0.02bc | 0.50 ± 0.04b | 0.17 ± 0.03abc | 0.64 ± 0.08abcd | |
25-40 cm | 0.49 ± 0.07de | 0.98 ± 0.11cd | 0.83 ± 0.07ef | 0.38 ± 0.03d | 0.13 ± 0.04cde | 0.58 ± 0.01bcd | |
针叶林 Coniferous forest (CF) | 0-10 cm | 0.59 ± 0.04bc | 1.07 ± 0.05bc | 1.08 ± 0.05b | 0.46 ± 0.03bc | 0.20 ± 0.02ab | 0.68 ± 0.08ab |
10-25 cm | 0.48 ± 0.01fg | 0.86 ± 0.09def | 0.92 ± 0.07de | 0.37 ± 0.04d | 0.16 ± 0.04bcd | 0.62 ± 0.01bcd | |
25-40 cm | 0.38 ± 0.02de | 0.79 ± 0.04efg | 0.84 ± 0.11ef | 0.28 ± 0.02e | 0.12 ± 0.03def | 0.54 ± 0.02df | |
亚高山矮林 Dwarf forest (DF) | 0-10 cm | 0.52 ± 0.08cd | 0.94 ± 0.07cde | 1.04 ± 0.02bc | 0.45 ± 0.03c | 0.15 ± 0.02cd | 0.66 ± 0.03abc |
10-25 cm | 0.44 ± 0.06ef | 0.81 ± 0.11efg | 0.90 ± 0.04de | 0.31 ± 0.04e | 0.10 ± 0.01ef | 0.59 ± 0.09bcd | |
25-40 cm | 0.32 ± 0.02gh | 0.69 ± 0.09gh | 0.73 ± 0.09gh | 0.29 ± 0.03e | 0.08 ± 0.01fg | 0.47 ± 0.05ef | |
高山草甸 Alpine meadow (AM) | 0-10 cm | 0.43 ± 0.04ef | 0.84 ± 0.13defg | 0.98 ± 0.02cd | 0.37 ± 0.01d | 0.13 ± 0.01cde | 0.56 ± 0.06cde |
10-25 cm | 0.33 ± 0.01g | 0.73 ± 0.12fgh | 0.79 ± 0.03fg | 0.31 ± 0.01e | 0.08 ± 0.01fg | 0.44 ± 0.04fg | |
25-40 cm | 0.25 ± 0.05h | 0.58 ± 0.11h | 0.64 ± 0.05h | 0.23 ± 0.01f | 0.05 ± 0.01g | 0.34 ± 0.06g |
表2 不同海拔梯度植被带土壤微生物群落对碳源的利用
Table 2 Carbon source utilization by soil microbial community in different vegetation belts along an elevation gradient
植被类型 Vegetation type | 土壤深度 Soil depth | 氨基酸类 Amino acid | 碳水化合物类Carbohydrate | 羧酸类Carboxylic acid | 聚合物类Polymer | 胺类 Amine | 酚酸类 Phenolic acid |
---|---|---|---|---|---|---|---|
常绿阔叶林Evergreen broad-leaved forest (EBF) | 0-10 cm | 0.67 ± 0.04a | 1.23 ± 0.07a | 1.28 ± 0.04a | 0.57 ± 0.01a | 0.21 ± 0.03a | 0.74 ± 0.12a |
10-25 cm | 0.60 ± 0.02ab | 1.19 ± 0.08ab | 1.02 ± 0.02bc | 0.50 ± 0.04b | 0.17 ± 0.03abc | 0.64 ± 0.08abcd | |
25-40 cm | 0.49 ± 0.07de | 0.98 ± 0.11cd | 0.83 ± 0.07ef | 0.38 ± 0.03d | 0.13 ± 0.04cde | 0.58 ± 0.01bcd | |
针叶林 Coniferous forest (CF) | 0-10 cm | 0.59 ± 0.04bc | 1.07 ± 0.05bc | 1.08 ± 0.05b | 0.46 ± 0.03bc | 0.20 ± 0.02ab | 0.68 ± 0.08ab |
10-25 cm | 0.48 ± 0.01fg | 0.86 ± 0.09def | 0.92 ± 0.07de | 0.37 ± 0.04d | 0.16 ± 0.04bcd | 0.62 ± 0.01bcd | |
25-40 cm | 0.38 ± 0.02de | 0.79 ± 0.04efg | 0.84 ± 0.11ef | 0.28 ± 0.02e | 0.12 ± 0.03def | 0.54 ± 0.02df | |
亚高山矮林 Dwarf forest (DF) | 0-10 cm | 0.52 ± 0.08cd | 0.94 ± 0.07cde | 1.04 ± 0.02bc | 0.45 ± 0.03c | 0.15 ± 0.02cd | 0.66 ± 0.03abc |
10-25 cm | 0.44 ± 0.06ef | 0.81 ± 0.11efg | 0.90 ± 0.04de | 0.31 ± 0.04e | 0.10 ± 0.01ef | 0.59 ± 0.09bcd | |
25-40 cm | 0.32 ± 0.02gh | 0.69 ± 0.09gh | 0.73 ± 0.09gh | 0.29 ± 0.03e | 0.08 ± 0.01fg | 0.47 ± 0.05ef | |
高山草甸 Alpine meadow (AM) | 0-10 cm | 0.43 ± 0.04ef | 0.84 ± 0.13defg | 0.98 ± 0.02cd | 0.37 ± 0.01d | 0.13 ± 0.01cde | 0.56 ± 0.06cde |
10-25 cm | 0.33 ± 0.01g | 0.73 ± 0.12fgh | 0.79 ± 0.03fg | 0.31 ± 0.01e | 0.08 ± 0.01fg | 0.44 ± 0.04fg | |
25-40 cm | 0.25 ± 0.05h | 0.58 ± 0.11h | 0.64 ± 0.05h | 0.23 ± 0.01f | 0.05 ± 0.01g | 0.34 ± 0.06g |
植被类型 Vegetation type | Simpson指数 Simpson index | Shannon-Wiener指数 Shannon-Wiener index | 丰富度指数 Richness index | McIntosh指数 McIntosh index |
---|---|---|---|---|
EBF | 0.969 ± 0.002a | 3.558 ± 0.011a | 18.67 ± 1.07a | 0.921 ± 0.013a |
CF | 0.948 ± 0.002b | 3.396 ± 0.023b | 16.13 ± 0.96b | 0.868 ± 0.003b |
DF | 0.942 ± 0.004c | 3.377 ± 0.032b | 15.58 ± 0.73b | 0.874 ± 0.004b |
AM | 0.915 ± 0.003d | 3.096 ± 0.022c | 13.49 ± 1.12c | 0.859 ± 0.002c |
表3 不同植被带的土壤微生物群落功能多样性指数
Table 3 Functional diversity indices for soil microbial communities of different vegetation belts
植被类型 Vegetation type | Simpson指数 Simpson index | Shannon-Wiener指数 Shannon-Wiener index | 丰富度指数 Richness index | McIntosh指数 McIntosh index |
---|---|---|---|---|
EBF | 0.969 ± 0.002a | 3.558 ± 0.011a | 18.67 ± 1.07a | 0.921 ± 0.013a |
CF | 0.948 ± 0.002b | 3.396 ± 0.023b | 16.13 ± 0.96b | 0.868 ± 0.003b |
DF | 0.942 ± 0.004c | 3.377 ± 0.032b | 15.58 ± 0.73b | 0.874 ± 0.004b |
AM | 0.915 ± 0.003d | 3.096 ± 0.022c | 13.49 ± 1.12c | 0.859 ± 0.002c |
图2 不同海拔梯度植被带土壤微生物群落的碳代谢主成分(PC)分析。AM、CF、DF、EBF同表1。
Fig. 2 Principal component (PC) analysis for carbon metabolism of soil microbial communities in different vegetation belts along an elevation gradient. AM, CF, DF and EBF are the same as in Table 1.
pH | 含水率 Water content (%) | 总有机碳 TOC | 全氮 TN | 全磷 TP | 全钾 TK | |
---|---|---|---|---|---|---|
Simpson指数 Simpson index | -0.34 | 0.96* | 0.99** | 0.96** | 0.99** | 0.90* |
Shannon-Wiener指数 Shannon-Wiener index | -0.25 | 0.98** | 0.98** | 0.92* | 0.96** | 0.84 |
丰富度指数 Richness index | -0.37 | 0.91* | 0.96* | 0.98** | 1.00** | 0.93* |
McIntosh指数 McIntosh index | -0.26 | 0.72 | 0.97** | 0.89* | 0.91* | 0.87 |
表4 土壤理化性质与微生物群落功能多样性相关性分析
Table 4 Correlation analysis of soil physical-chemical properties and microbial community functional diversity
pH | 含水率 Water content (%) | 总有机碳 TOC | 全氮 TN | 全磷 TP | 全钾 TK | |
---|---|---|---|---|---|---|
Simpson指数 Simpson index | -0.34 | 0.96* | 0.99** | 0.96** | 0.99** | 0.90* |
Shannon-Wiener指数 Shannon-Wiener index | -0.25 | 0.98** | 0.98** | 0.92* | 0.96** | 0.84 |
丰富度指数 Richness index | -0.37 | 0.91* | 0.96* | 0.98** | 1.00** | 0.93* |
McIntosh指数 McIntosh index | -0.26 | 0.72 | 0.97** | 0.89* | 0.91* | 0.87 |
[1] | Alexander M ( 1977). Introduction to Soil Microbiology. John Wiley and Sons, New York. 128-173. |
[2] | Cao CY, Chen JM, Shao JF, Cui ZB ( 2011). Seasonal dynamics of soil microbial biomass and enzyme activities in four sand-fixation plantations on Horqin sandy land. Chinese Journal of Ecology, 30, 227-233. (in Chinese with English abstract) |
[ 曹成有, 陈家模, 邵建飞, 崔振波 ( 2011). 科尔沁沙地四种固沙植物群落土壤微生物生物量及酶活性的季节动态. 生态学杂志, 30, 227-233.] | |
[3] | Dong LG, Jiang Q, Cai JJ, Zhang YR, Xu H, Li SB ( 2011). Analysis on functional diversity of edaphon communities in Medicago sativa fields of different growth years based on Biolog-ECO plates. Arid Zone Research, 28, 630-637. (in Chinese with English abstract) |
[ 董立国, 蒋齐, 蔡进军, 张源润, 许浩, 李生宝 ( 2011). 基于Biolog-ECO技术不同退耕年限苜蓿地土壤微生物功能多样性分析. 干旱区研究, 28, 630-637.] | |
[4] | Garland JL ( 1996). Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology & Biochemistry, 28, 213-221. |
[5] | He R, Wang JS, Shi Z, Fang YH, Xu ZK, Quan W, Zhang ZX, Ruan HH ( 2009a). Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China. Acta Ecologica Sinica, 29, 5138-5144. (in Chinese with English abstract) |
[ 何容, 汪家社, 施政, 方燕鸿, 徐自坤, 权伟, 张增信, 阮宏华 ( 2009a). 武夷山植被带土壤微生物量沿海拔梯度的变化. 生态学报, 29, 5138-5144.] | |
[6] | He R, Wang GB, Wang JS, Xu BF, Wang JK, Fang YH, Shi Z, Ruan HH ( 2009b). Seasonal variation and its main affecting factors of soil microbial biomass under different vegetations along an elevation gradient in Wuyi Mountains of China. Chinese Journal of Ecology, 28, 394-399. (in Chinese with English abstract) |
[ 何容, 王国兵, 汪家社, 许波峰, 汪继科, 方燕鸿, 施政, 阮宏华 ( 2009b). 武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子. 生态学杂志, 28, 394-399.] | |
[7] | Huang YY, Qu LY, Qu XC, Du SQ ( 2012). Soil microbial community characteristics under different vegetation types at the Holocene-basalt Platform, Jingpo Lake area, Northeast China. Acta Ecologica Sinica, 32, 2827-2836. (in Chinese with English abstract) |
[ 黄元元, 曲来叶, 曲秀春, 杜淑芹 ( 2012). 镜泊湖岩溶台地不同植被类型土壤微生物群落特征. 生态学报, 32, 2827-2836.] | |
[8] | Jin YH, Wang JS, Li LG, Ruan HH, Xu ZK, Han LY ( 2011). Soil enzyme activities in typical vegetation zones along an altitude gradient in Wuyi Mountains. Chinese Journal of Ecology, 30, 1955-1961. (in Chinese with English abstract) |
[ 金裕华, 汪家社, 李黎光, 阮宏华, 徐自坤, 韩凌云 ( 2011). 武夷山不同海拔典型植被带土壤酶活性特征. 生态学杂志, 30, 1955-1961.] | |
[9] | Jussila MM, Jurgens G, Lindström K, Suominen L ( 2006). Genetic diversity of culturable bacteria in oil-contamin- ated rhizosphere of Galega orientalis. Environmental Pollution, 139, 244-257. |
[10] | Li CG, Li XM, Wang JG ( 2006). Effect of soybean continuous cropping on bulk and rhizosphere soil microbial community function. Acta Ecologica Sinica, 26, 1144-1150. (in Chinese with English abstract) |
[ 李春格, 李晓鸣, 王敬国 ( 2006). 大豆连作对土体和根际微生物群落功能的影响. 生态学报, 26, 1144-1150.] | |
[11] | Li H, Chen GX, Zhang Y, Zhang CG ( 2004). Application of molecular biotechniques in the study on microbial diversity in polluted soils. Acta Pedologica Sinica, 41, 612-617. (in Chinese with English abstract) |
[ 李慧, 陈冠雄, 张颖, 张成刚 ( 2004). 分子生物学方法在污染土壤微生物多样性研究中的应用. 土壤学报, 41, 612-617.] | |
[12] | Lin DY (2004). Pedology Experimental Guidance. China Forestry Publishing House, Beijing. 121-152. (in Chinese) |
[ 林大仪 (2004). 土壤学实验指导. 中国林业出版社, 北京. 121-152.] | |
[13] | Lin RY, Rong H, Zhou JJ, Yu CP, Ye CY, Chen LS, Lin WX ( 2007). Impact of rice seedling allelopathy on rhizospheric microbial populations and their functional diversities. Acta Ecologica Sinica, 27, 3644-3654. (in Chinese with English abstract) |
[ 林瑞余, 戎红, 周军建, 于翠平, 叶陈英, 陈良生, 林文雄 ( 2007). 苗期化感水稻对根际土壤微生物群落及其功能多样性的影响. 生态学报, 27, 3644-3654.] | |
[14] | Lin WX, Xiong J, Zhou JJ, Qiu L, Shen LH, Li ZF, Chen H, Hao HR, Chen T, Lin RY, He HB, Liang YY ( 2007). Research status and its perspective on the properties of rhizosphere biology mediated by allelopathic plants. Chinese Journal of Eco-Agriculture, 15(4), 1-8. (in Chinese with English abstract) |
[ 林文雄, 熊君, 周军建, 邱龙, 沈荔花, 李振方, 陈慧, 郝慧荣, 陈婷, 林瑞余, 何海斌, 梁义元 ( 2007). 化感植物根际生物学特性研究现状与展望. 中国生态农业学报, 15(4), 1-8.] | |
[15] | Liu W, Wang ST, Chen YX, Wu WX, Wang J ( 2011). Microbial diversity in rhizosphere soil of transgenic Bt rice based on the characterization of phospholipids fatty acids. Chinese Journal of Applied Ecology, 22, 727-733. (in Chinese with English abstract) |
[ 刘微, 王树涛, 陈英旭, 吴伟祥, 王璟 ( 2011). 转Bt基因水稻根际土壤微生物多样性的磷脂脂肪酸(PLFAs)表征. 应用生态学报, 22, 727-733.] | |
[16] | Liu Y, Zhang J, Yan BG, Huang X, Xu ZF, Wu FZ ( 2012). Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, Eastern Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 36, 382-392. (in Chinese with English abstract) |
[ 刘洋, 张健, 闫帮国, 黄旭, 徐振锋, 吴福忠 ( 2012). 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态. 植物生态学报, 36, 382-392.] | |
[17] | Luo XQ, Hao XH, Chen T, Deng CJ, Wu JS, Hu RG ( 2009). Effects of long-term different fertilization on microbial community functional diversity in paddy soil. Acta Ecologica Sinica, 29, 740-748. (in Chinese with English abstract) |
[ 罗希茜, 郝晓晖, 陈涛, 邓婵娟, 吴金水, 胡荣桂 ( 2009). 长期不同施肥对稻田土壤微生物群落功能多样性的影响. 生态学报, 29, 740-748.] | |
[18] | Ma KP, Liu YM ( 1994). Measurement of biotic community diversity I:α diversity (2). Chinese Biodiversity, 2, 231-239. (in Chinese with English abstract) |
[ 马克平, 刘玉明 ( 2012). 生物群落多样性的测定方法I: α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[19] |
Murphy DV, Cookson WR, Braimbridge M, Marschner P, Jones DL, Stockdale EA, Abbott LK ( 2011). Relationships between soil organic matter and the soil microbial biomass (size, functional diversity, and community structure) in crop and pasture systems in a semi-arid environment. Soil Research, 49, 582-594.
DOI URL |
[20] | Shao YY, Wang ZY, Zou L, Wu SP ( 2011). Effect of chlorothalonil on soil microbial communities of Larix artificial shelter-forest. Acta Ecologica Sinica, 31, 819-829. (in Chinese with English abstract) |
[ 邵元元, 王志英, 邹莉, 吴韶平 ( 2011). 百菌清对落叶松人工防护林土壤微生物群落的影响. 生态学报, 31, 819-829.] | |
[21] | Shi P, Gao Q, Wang SP, Zhang Y ( 2010). Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity. Acta Ecologica Sinica, 30, 6173-6182. (in Chinese with English abstract) |
[ 时鹏, 高强, 王淑平, 张妍 ( 2010). 玉米连作及其施肥对土壤微生物群落功能多样性的影响. 生态学报, 30, 6173-6182.] | |
[22] | Unger M, Leuschner C, Homeier J ( 2010). Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests. Plant and Soil, 336, 443-458. |
[23] | Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF ( 2010). Relationship between plant communities, character, soil physical and chemical properties, and soil microbiology in alpine meadows. Pratacultural Science, 19(6), 25-34. (in Chinese with English abstract) |
[ 王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞 ( 2010). 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业科学, 19(6), 25-34.] | |
[24] | Yang XT, Ning GH, Dong HY, Li Y ( 2006). Soil microbial characters under different vegetation communities in Taihang Mountain Area. Chinese Journal of Applied Ecology, 17, 1761-1764. (in Chinese with English abstract) |
[ 杨喜田, 宁国华, 董惠英, 李有 ( 2006). 太行山区不同植被群落土壤微生物学特征变化. 应用生态学报, 17, 1761-1764.] | |
[25] |
Ye F, Song CJ, Tao J, Li CL ( 2010). Effects of planting transgenic cotton on functional diversity of rhizosphere soil microbial community. Chinese Journal of Applied Ecology, 21, 386-390. (in Chinese with English abstract)
URL PMID |
[ 叶飞, 宋存江, 陶剑, 李长林 ( 2010). 转基因棉花种植对根际土壤微生物群落功能多样性的影响. 应用生态学报, 21, 386-390.]
URL PMID |
|
[26] | Zhang SY, Yuan HH, Lu M, Jiang CF, Xiang SM ( 2010). The soil enzyme activities of different land use types and the relationships between the soil enzyme activities and physical chemical properties or microorganism in mountainous area of northwest Yunnan Province. Subtropical Soil and Water Conservation, 22, 13-16. (in Chinese with English abstract) |
[ 张仕艳, 原海红, 陆梅, 蒋翠芬, 向仕敏 ( 2010). 滇西北不同利用类型土壤酶活性及其与理化性质与微生物的关系. 亚热带水土保持, 22, 13-16.] | |
[27] | Zhang WT, Lai HX, Wang YP, Zhang H, Yang T, Lü JL ( 2008). Microbial populations in different vegetations in sloping field on the Loess Plateau. Acta Ecologica Sinica, 28, 4228-4234. (in Chinese with English abstract) |
[ 张文婷, 来航线, 王延平, 张海, 杨婷, 吕家珑 ( 2008). 黄土高原不同植被坡地土壤微生物区系特征. 生态学报, 28, 4228-4234.] | |
[28] |
Zhang X, Zhao X, Zhang M ( 2012). Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge. FEMS Microbiology Ecology, 80, 9-18.
DOI URL PMID |
[29] | Zheng H, Ouyang ZY, Wang XK, Fang ZG, Zhao TQ, Miao H ( 2004). Effects of forest restoration patterns on soil microbial communities. Chinese Journal of Applied Ecology, 15, 2019-2024. (in Chinese with English abstract) |
[ 郑华, 欧阳志云, 王效科, 方治国, 赵同谦, 苗鸿 ( 2004). 不同森林恢复类型对土壤微生物群落的影响. 应用生态学报, 15, 2019-2024.] | |
[30] |
Zheng H, Ouyang ZY, Wang XK, Fang ZG, Zhao TQ, Miao H ( 2005). Effects of regenerating forest over on soil microbial communities: a case study in hilly red soil region, Southern China. Forest Ecology and Management, 217, 244-254.
DOI URL |
[31] | Zheng XF, Su YK, Liu B, Lan JL, Yang SS, Lin YZ ( 2010). Microbial community diversity in tea root zone soils at different elevations. Chinese Journal of Eco-Agriculture, 18, 866-871. (in Chinese with English abstract) |
[ 郑雪芳, 苏远科, 刘波, 蓝江林, 杨述省, 林营志 ( 2010). 不同海拔茶树根系土壤微生物群落多样性分析. 中国生态农业学报, 18, 866-871.] | |
[32] |
Zhou J, Lei T ( 2007). Review and prospects on methodology and affecting factors of soil microbial diversity. Biodiversity Science, 15, 306-311. (in Chinese with English abstract)
DOI URL |
[ 周桔, 雷霆 ( 2007). 土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 15, 306-311.]
DOI URL |
|
[33] |
Zhou LL, Yao B, Xiang YZ, Shang H, Wei XW, Liu F ( 2010). Growth and microbial community characteristics in the rhizosphere of poplar in respond to pentachlorophenol stress. Scientia Silvae Sinicae, 46(10), 62-68. (in Chinese with English abstract)
DOI URL |
[ 周玲莉, 姚斌, 向仰州, 尚鹤, 韦秀文, 刘方 ( 2010). 五氯酚胁迫对杨树生长及根际微生物群落的响应特征. 林业科学, 46(10), 62-68.]
DOI URL |
|
[34] |
Zou XM, Ruan HH, Fu Y, Yang XD, Sha LQ ( 2005). Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biology & Biochemistry, 37, 1923-1928.
DOI URL |
[1] | 解梦怡 冯秀秀 马寰菲 胡汗 王洁莹 郭垚鑫 任成杰 王俊 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 0-0. |
[2] | 罗林 黄艳 梁进 汪恩涛 胡君 贺合亮 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 0-0. |
[3] | 洪芳, 向颖, 陈朝阳, 孙亮先, 罗春首, 蒋国芳. 龙栖山自然保护区蝴蝶群落多样性及区系组成[J]. 生物多样性, 2020, 28(8): 1003-1007. |
[4] | 李佳佳 樊妙春 上官周平. 植物根系分泌物主要生态功能研究进展[J]. 植物学报, 2020, 55(6): 0-0. |
[5] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
[6] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[7] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[8] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[9] | 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184. |
[10] | 吴曼, 李娟娟, 刘金铭, 任安芝, 高玉葆. 刈割干扰和养分添加条件下Epichloë内生真菌感染对羽茅所在群落多样性和生产力的影响[J]. 植物生态学报, 2019, 43(2): 85-93. |
[11] | 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响[J]. 生物多样性, 2018, 26(9): 962-971. |
[12] | 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987. |
[13] | 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589. |
[14] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[15] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2021 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19