植物生态学报 ›› 2006, Vol. 30 ›› Issue (4): 655-665.DOI: 10.17521/cjpe.2006.0086
收稿日期:
2005-09-21
接受日期:
2005-12-31
出版日期:
2006-09-21
发布日期:
2006-07-30
作者简介:
E-mail:zhaoping@scib ac.cn
基金资助:
ZHAO Ping(), RAO Xing-Quan, MA Ling, CAI Xi-An, ZENG Xiao-Ping
Received:
2005-09-21
Accepted:
2005-12-31
Online:
2006-09-21
Published:
2006-07-30
摘要:
应用Granier热消散探针,长期监测华南丘陵地马占相思(Acacia mangium)林14棵样树的树干液流(Sap flow),由此计算整树和林段的蒸腾速率,结合同步记录的环境因子,求算冠层平均气孔导度(Gc)。Granier探针的灵敏度较高,能精确测定即使是微弱的液流活动。观测结果显示,树木个体之间的液流密度(Js)和整树蒸腾(Et)受树形特征影响较大。马占相思林径级大的树木个体数较少,但占据林段边材总面积和林段蒸腾的比例较大。Js和Et的日变化主要受光合有效辐射(Qo)和空气水蒸气压亏缺(D)的控制,土壤含水量(θ)对较大胸径树木Et的影响大于胸径较小的树木,个体之间Js和Et的差异随θ的下降而缩小。一年中,林段蒸腾(E)在光照和水热条件较好的7月最高,9~12月,由于土壤水分供应的减少致使E值降低,E对D的敏感性下降。Gc与主要环境因子的关系与E相似,如果θ长期偏低,Gc会明显下降,是造成E降低的主要原因。成熟马占相思林在光照充足、水热条件较好的情况下的蒸腾活动旺盛,但对土壤水分胁迫的忍受力较低。
赵平, 饶兴权, 马玲, 蔡锡安, 曾小平. 基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度. 植物生态学报, 2006, 30(4): 655-665. DOI: 10.17521/cjpe.2006.0086
ZHAO Ping, RAO Xing-Quan, MA Ling, CAI Xi-An, ZENG Xiao-Ping. SAP FLOW-SCALED STAND TRANSPIRATION AND CANOPY STOMATAL CONDUCTANCE IN AN ACACIA MANGIUM FOREST. Chinese Journal of Plant Ecology, 2006, 30(4): 655-665. DOI: 10.17521/cjpe.2006.0086
图1 马占相思林样地树木的分布状况 ● 树干液流测定的样树○ 非树干液流测定的树木
Fig.1 Tree distribution within the sample plot of Acacia mangium forest ● Sap flow measurement ○Non-sap flow measurement
序号 No. | 树高 Height (m) | 枝下高 Stem length (m) | 冠幅 Canopy size (m×m) | 胸径 DBH (m) | 边材厚度 Sapwood depth (m) | 边材面积 Sapwood area (m2) | |
---|---|---|---|---|---|---|---|
1 | 19.3 | 3.1 | 6.7 | 3.3 | 0.292 9 | 0.025 4 | 0.020 1 |
2 | 17.9 | 2.7 | 4.6 | 3.0 | 0.238 8 | 0.021 7 | 0.013 7 |
3 | 22.8 | 9.0 | 6.1 | 8.4 | 0.328 9 | 0.027 9 | 0.024 8 |
4 | 19.5 | 2.8 | 7.5 | 8.1 | 0.375 1 | 0.031 1 | 0.031 6 |
5 | 15.6 | 1.6 | 3.8 | 2.7 | 0.181 5 | 0.017 8 | 0.008 3 |
6 | 14.5 | 6.0 | 2.6 | 4.1 | 0.171 9 | 0.017 1 | 0.007 5 |
7 | 12.0 | 7.3 | 3.3 | 4.1 | 0.168 9 | 0.016 9 | 0.007 2 |
8 | 19.5 | 6.5 | 3.3 | 3.3 | 0.238 8 | 0.021 7 | 0.013 7 |
9 | 18.2 | 9.2 | 3.7 | 2.4 | 0.213 3 | 0.020 0 | 0.011 1 |
10 | 18.7 | 10.9 | 3.0 | 4.1 | 0.254 7 | 0.022 8 | 0.015 5 |
11 | 19.5 | 12.0 | 3.9 | 1.5 | 0.203 8 | 0.019 3 | 0.010 2 |
12 | 20.0 | 9.3 | 4.6 | 4.3 | 0.207 0 | 0.019 5 | 0.010 5 |
13 | 12.0 | 3.7 | 3.6 | 4.7 | 0.133 7 | 0.014 5 | 0.004 7 |
14 | 19.5 | 4.7 | 2.6 | 2.7 | 0.181 5 | 0.017 8 | 0.008 3 |
表1 马占相思样树的树形特征
Table 1 Tree characteristics of Acacia mangium
序号 No. | 树高 Height (m) | 枝下高 Stem length (m) | 冠幅 Canopy size (m×m) | 胸径 DBH (m) | 边材厚度 Sapwood depth (m) | 边材面积 Sapwood area (m2) | |
---|---|---|---|---|---|---|---|
1 | 19.3 | 3.1 | 6.7 | 3.3 | 0.292 9 | 0.025 4 | 0.020 1 |
2 | 17.9 | 2.7 | 4.6 | 3.0 | 0.238 8 | 0.021 7 | 0.013 7 |
3 | 22.8 | 9.0 | 6.1 | 8.4 | 0.328 9 | 0.027 9 | 0.024 8 |
4 | 19.5 | 2.8 | 7.5 | 8.1 | 0.375 1 | 0.031 1 | 0.031 6 |
5 | 15.6 | 1.6 | 3.8 | 2.7 | 0.181 5 | 0.017 8 | 0.008 3 |
6 | 14.5 | 6.0 | 2.6 | 4.1 | 0.171 9 | 0.017 1 | 0.007 5 |
7 | 12.0 | 7.3 | 3.3 | 4.1 | 0.168 9 | 0.016 9 | 0.007 2 |
8 | 19.5 | 6.5 | 3.3 | 3.3 | 0.238 8 | 0.021 7 | 0.013 7 |
9 | 18.2 | 9.2 | 3.7 | 2.4 | 0.213 3 | 0.020 0 | 0.011 1 |
10 | 18.7 | 10.9 | 3.0 | 4.1 | 0.254 7 | 0.022 8 | 0.015 5 |
11 | 19.5 | 12.0 | 3.9 | 1.5 | 0.203 8 | 0.019 3 | 0.010 2 |
12 | 20.0 | 9.3 | 4.6 | 4.3 | 0.207 0 | 0.019 5 | 0.010 5 |
13 | 12.0 | 3.7 | 3.6 | 4.7 | 0.133 7 | 0.014 5 | 0.004 7 |
14 | 19.5 | 4.7 | 2.6 | 2.7 | 0.181 5 | 0.017 8 | 0.008 3 |
图3 马占相思林样地树木径级的分布频度及对应的边材总面积
Fig.3 Frequency distribution of diameter at breast height (DBH) and sum of sapwood area of all trees at different DBH ranks 1: DBH<0.15 m 2: 0.15 m≤DBH<0.20 m 3: 0.20 m≤DBH<0.25 m 4: 0.25 m≤DBH<0.30 m 5: 0.30 m≤DBH
图4 马占相思光合有效辐射、气温、空气水蒸气压亏缺、液流密度和整树蒸腾的日变化
Fig.4 Daily variation of photosynthetically active radiation (Qo), air temperature (T), vapor pressure deficit (D),sap flux density (JS) and whole-tree transpiration (Et)
图5 马占相思林样地不同径级树木总蒸腾于不同季节的日变化 图内柱形小插图示每个径级树木单日蒸腾量占林段总蒸腾的百分比 Eci: 径级I树木的总蒸腾
Fig.5 Daily variation of total transpiration of different diameter at breast height (DBH) rank in different seasons Inserted graphics show the percentage of transpiration of different DBH in the total stand transpiration Eci: Total transpiration trees at DBH rank of I
图6 马占相思林段蒸腾、光合有效辐射、气温、空气水蒸气压亏缺以及土壤含水量的年进程(2004) 间断空白处为雷电或停电造成数据采集仪停止工作,或者仪器故障没有数据记录
Fig.6 Change of stand transpiration (E), photosynthetically active radiation (Qo), air temperature (T), vapor pressure deficit (D) and soil moisture (θ) in year of 2004 Missing data were due to equipment failure as a result of power off or lightning
图7 不同土壤水分条件下马占相思林段蒸腾对空气水蒸气压亏缺的响应 θ:土壤含水量
Fig.7 Stand transpiration (Ec) in response to vapor pressure deficit (D) in different soil moisture levels θ:Soil moisture
[1] | Bréda N, Cochard H, Dreyer E, Granier A (1993). Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annales des Sciences de Forestiere, 50, 571-582. |
[2] | Cai XA( 蔡锡安), Peng SL( 彭少麟), Zhao P( 赵平), Liu H( 刘惠), Rao XQ( 饶兴权) (2005). Ecophysiological characteristics of three native species used in two forest reconstructing models. Chinese Journal of Ecology(生态学杂志), 24, 243-250. (in Chinese with English abstract) |
[3] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. Springer-Verlag, New York, Berlin, Heidelberg, 36-51. |
[4] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[5] | Granier A, Biron P, Bréda N, Pontailler JY, Saugier B (1996a). Transipiration of trees and forest stand: short and long-term monitoring using sap flow methods. Global Change Biology, 2, 265-274. |
[6] | Granier A, Biron P, Køstner B, Gay LW, Najjar G (1996b). Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theoretical and Applied Climatology, 53, 115-122. |
[7] | Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308. |
[8] | Gyenge JE, Fernändez ME, Schlichter TM (2003). Water relations of ponderosa pines in Patagonia Argentina: implications for local water resources and individual growth. Trees, 17, 417-423. |
[9] | Køstner B, Granier A, Cermák J (1998). Sap flow measurements in forest stands methods and uncertainties. Annals of Forest Science, 55, 13-27. |
[10] |
Køstner BMM, Schulze ED, Kelliher FM (1992). Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia, 91, 350-359.
DOI URL PMID |
[11] | Lu P, Biron P, Breda N, Granier A (1995). Water relations of Norway Spruce (Picea abies L. Karst) under soil drought in the Vosges Mountains: water potential, stomatal conductance and transpiration. Annals of Forest Science, 52, 117-129. |
[12] | Lu P, Biron P, Granier A, Cochard H (1996). Water relations of Norway Spruce (Picea abies L. Karst) under soil drought in the Vosges Mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Annals of Forest Science, 53, 113-121. |
[13] | Lu P, Urban L, Zhao P (2004). Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica (植物学报), 46, 631-646. |
[14] | Ma L( 马玲), Zhao P( 赵平), Rao XQ( 饶兴权), Cai XA( 蔡锡安), Zeng XP( 曾小平) (2005). Main determination methods of tree transpiration. Chinese Journal of Ecology(生态学杂志), 24, 88-96. (in Chinese with English abstract) |
[15] |
Oren R, Pataki DE (2001). Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia, 127, 549-559.
DOI URL PMID |
[16] |
Otieno DO, Schmit MWT, Adiku S, Tenhunen J (2005). Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiology, 25, 361-371.
DOI URL PMID |
[17] | Pan ZG( 潘志刚), Feng S( 冯水), Lin HS( 林鸿盛) (1996). Introduction, growth and use of Acacia mangium. Tropical Forestry(热带森林), 24, 144-152. (in Chinese with English abstract) |
[18] |
Pataki D, Oren R, Tissue TD (1998a). Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L. Oecologia, 117, 47-52.
DOI URL PMID |
[19] |
Pataki DE, Oren R, Katul G, Sigmon J (1998b). Canopy conductance of Pinus taeda, Liquidanmbar styraciflua and Quercus phellos under varying atmosphere and soil water conditions. Tree Physiology, 18, 307-315.
DOI URL PMID |
[20] | Pataki DE, Oren R, Smith WK (2000). Transpiration of co-occurring species in a western subalpine forest during seasonally developing drought. Ecology, 81, 2557-2566. |
[21] | Phillips N, Oren R, Zimmermann R (1996). Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant, Cell and Environment, 19, 983-990. |
[22] | Schøfer KVR, Oren R, Ellsworth DS, Lai CT, Jeffrey DH, Finzi AC, Richter DD, Katul GG (2003). Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology, 9, 1378-1400. |
[23] | Schøfer KVR, Oren R, Tenhunen JD (2000). The effect of tree height on crown level stomatal conductance. Plant, Cell and Environment, 23, 365-375. |
[24] | Wang HT( 王华田), Ma LY( 马履一) (2002). Measurement of whole tree's water consumption with thermal dissipation sap flow probe (TDP). Acta Phytoecologica Sinica(植物生态学报), 26, 661-667. (in Chinese with English abstract) |
[25] | Zeng XP( 曾小平), Zhao P( 赵平), Peng SL( 彭少麟) (2000). Study on the water ecology of artificial Acacia mangium forest in the Heshan hilly region, Guangdong Province. Acta Phytoecologica Sinica(植物生态学报), 24, 69-73. (in Chinese with English abstract) |
[26] | Zhao P( 赵平), Yu ZY( 余作岳), Zeng XP( 曾小平) (1990). Water loss by transpiration through leaves of three species of Acacia on hilly land in Heshan, Guangdong Province. Tropical and Subtropical Forest Ecosystem(热带亚热带森林生态系统), 7, 12-16. (in Chinese with English abstract) |
[27] | Zhao P( 赵平), Zeng XP( 曾小平), Cai XA( 蔡锡安), Peng SL( 彭少麟) (2002). Report on measurement of leaf area index of low subtropical forests by using digital plant canopy imager. Guihaia(广西植物), 22, 485-489. (in Chinese with English abstract) |
[28] | Zhao P, Peng SL, Zeng XP, Ding MM (2002). Introduced Acacias facilitate re-vegetation of early successional forests on degraded sites (China). Ecological Restoration, 20, 68-69. |
[1] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[2] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[3] | 吴旭, 陈云明, 唐亚坤. 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J]. 植物生态学报, 2015, 39(12): 1176-1187. |
[4] | 徐飞, 杨风亭, 王辉民, 戴晓琴. 树干液流径向分布格局研究进展[J]. 植物生态学报, 2012, 36(9): 1004-1014. |
[5] | 金鹰, 王传宽, 桑英. 三种温带树种树干储存水对蒸腾的贡献[J]. 植物生态学报, 2011, 35(12): 1310-1317. |
[6] | 吴芳, 陈云明, 于占辉. 黄土高原半干旱区刺槐生长盛期树干液流动态[J]. 植物生态学报, 2010, 34(4): 469-476. |
[7] | 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉. 基于涡度相关法和树干液流法评价杨树人工林 生态系统蒸发散及其环境响应[J]. 植物生态学报, 2009, 33(4): 706-718. |
[8] | 臧春鑫, 杨劼, 袁劼, 刘鑫, 宋炳煜. 毛乌素沙地中间锦鸡儿整株丛的蒸腾特征[J]. 植物生态学报, 2009, 33(4): 719-727. |
[9] | 王华, 赵平, 蔡锡安, 王权, 马玲, 饶兴权, 曾小平. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植物生态学报, 2007, 31(5): 777-786. |
[10] | 余华, Bee-Lian ONG. 马占相思的日光合作用和日碳固定总量研究 (英文)[J]. 植物生态学报, 2003, 27(5): 624-630. |
[11] | 闫俊华, 周国逸, 林永标. 鹤山马占相思生态系统重建过程中对立地水热因子的调节作用[J]. 植物生态学报, 2002, 26(4): 465-472. |
[12] | 周国逸, 闫俊华, 申卫军, 侯爱敏, 余作岳, 林永标. 马占相思人工林和果园地表径流规律的对比研究[J]. 植物生态学报, 2000, 24(4): 451-458. |
[13] | 曾小平, 彭少麟, 赵平. 广东南亚热带马占相思林呼吸量的测定[J]. 植物生态学报, 2000, 24(4): 420-424. |
[14] | 曾小平, 赵平, 彭少麟. 鹤山人工马占相思林水分生态研究[J]. 植物生态学报, 2000, 24(1): 69-73. |
[15] | 任海, 彭少麟, 向言词. 鹤山马占相思人工林的生物量和净初级生产力[J]. 植物生态学报, 2000, 24(1): 18-21. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3927
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 5038
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La