植物生态学报 ›› 2011, Vol. 35 ›› Issue (12): 1310-1317.DOI: 10.3724/SP.J.1258.2011.01310
• 研究论文 • 上一篇
收稿日期:
2011-07-14
接受日期:
2011-09-27
出版日期:
2011-07-14
发布日期:
2011-12-15
通讯作者:
王传宽
作者简介:
*(E-mail:wangck-cf@nefu.edu.cn)
JIN Ying, WANG Chuan-Kuan*(), SANG Ying
Received:
2011-07-14
Accepted:
2011-09-27
Online:
2011-07-14
Published:
2011-12-15
Contact:
WANG Chuan-Kuan
摘要:
树干储存水在协调叶片水分和碳平衡、维持树木水分收支平衡中起着重要作用。以无孔材红松(Pinus koraiensis)、散孔材山杨(Populus davidiana)和环孔材蒙古栎(Quercus mongolica)为对象, 于2010年8月中旬至9月末(生长季后期)测定其冠基和干基树干液流通量以及树干储存水的日变化过程, 量化分析树干储存水对日蒸腾量的贡献及其生物影响因子。结果表明: 冠基的液流比干基启动得早, 而且两者在一天中存在显著的时滞。树干储存水的日进程总体上可分为: 完全释放、以释放为主补充为辅、以补充为主释放为辅、饱和稳定等4个阶段, 但每个阶段的持续时间和变化格局随树种而变。红松的树干储存水在一天内表现出两个释放-补充周期, 而两种阔叶树种均只经历了一次释放-补充过程。在测定时段内红松、山杨、蒙古栎标准化到平均木(边材体积为0.29 m3)的树干储存水释放量分别为: (3.4 ± 1.5)、(2.4 ± 0.6)和(1.5 ± 0.4) kg·d -1, 分别占日蒸腾量的18.9%、17.1%和8.8%。树干储存水释放量与日蒸腾量呈显著的指数函数关系, 而与干基的边材面积和树高呈正相关关系。该研究突显了树木大小(树高和边材面积)和材性特征对树干储存水释放量及其对蒸腾量贡献的重要影响。
金鹰, 王传宽, 桑英. 三种温带树种树干储存水对蒸腾的贡献. 植物生态学报, 2011, 35(12): 1310-1317. DOI: 10.3724/SP.J.1258.2011.01310
JIN Ying, WANG Chuan-Kuan, SANG Ying. Contribution of stem water storage to daily transpiration of three temperate trees in northeastern China. Chinese Journal of Plant Ecology, 2011, 35(12): 1310-1317. DOI: 10.3724/SP.J.1258.2011.01310
树种 Species | 树高 Tree height (m) | 冠基高度 Height of crown base (m) | 冠幅 Crown width (m) | 干基 (胸高) Trunk base (breast height) | 冠基 Crown base | |||
---|---|---|---|---|---|---|---|---|
直径 Diameter (cm) | 边材宽度Sapwood width (cm) | 直径 Diameter (cm) | 边材宽度 Sapwood width (cm) | |||||
红松 Pinus koraiensis | 16.5 (0.5) | 6.3 (0.5) | 4.7 (1.2) | 26.1 (3.1) | 3.4 (0.8) | 20.7 (2.8) | 3.3 (0.9) | |
山杨 Populus davidiana | 25.8 (1.9) | 15.0 (0.6) | 4.7 (0.3) | 29.1 (1.2) | 7.1 (1.5) | 17.9 (0.7) | 4.7 (1.9) | |
蒙古栎 Quercus mongolica | 16.7 (0.8) | 9.8 (2.3) | 4.7 (1.6) | 27.5 (4.7) | 1.9 (0.6) | 20.3 (5.2) | 1.5 (0.6) |
表1 树干液流测定样树的基本特征(平均值(标准偏差), n = 3)
Table 1 Characteristics of the sampled trees for sapflow measurement (mean (SD), n = 3)
树种 Species | 树高 Tree height (m) | 冠基高度 Height of crown base (m) | 冠幅 Crown width (m) | 干基 (胸高) Trunk base (breast height) | 冠基 Crown base | |||
---|---|---|---|---|---|---|---|---|
直径 Diameter (cm) | 边材宽度Sapwood width (cm) | 直径 Diameter (cm) | 边材宽度 Sapwood width (cm) | |||||
红松 Pinus koraiensis | 16.5 (0.5) | 6.3 (0.5) | 4.7 (1.2) | 26.1 (3.1) | 3.4 (0.8) | 20.7 (2.8) | 3.3 (0.9) | |
山杨 Populus davidiana | 25.8 (1.9) | 15.0 (0.6) | 4.7 (0.3) | 29.1 (1.2) | 7.1 (1.5) | 17.9 (0.7) | 4.7 (1.9) | |
蒙古栎 Quercus mongolica | 16.7 (0.8) | 9.8 (2.3) | 4.7 (1.6) | 27.5 (4.7) | 1.9 (0.6) | 20.3 (5.2) | 1.5 (0.6) |
图1 3树种冠基和干基液流通量以及光合有效辐射的日变化(平均值±标准偏差)。红松(HS)、山杨(SY)、蒙古栎(ML)的样本数分别为9、16和12。
Fig. 1 Diurnal courses of the crown-basal and trunk-basal sap flow and photosynthetically active radiation (PAR) for three tree species (mean ± SD). The sample sizes for Pinus koraiensis (HS), Populus davidiana (SY), and Quercus mongolica (ML) are 9, 16, and 12, respectively.
图2 3树种树干储存水释放和补充日动态(平均值±标准偏差)。红松(HS)、山杨(SY)、蒙古栎(ML)的样本数分别为9、16和12。
Fig. 2 Diurnal courses of discharge and recharge of stem stored water for three tree species (mean ± SD). The sample sizes for Pinus koraiensis (HS), Populus davidiana (SY), and Quercus mongolica (ML) are 9, 16, and 12, respectively.
图3 3树种树干储存水释放量及其对蒸腾量的贡献(平均值±标准偏差)。WSn, 标准化后树干储存水释放量; Trn, 标准化后蒸腾量; WSn/Trn, 标准化后树干储存水释放量对蒸腾的贡献率。红松(HS)、山杨(SY)、蒙古栎(ML)的样本数分别为9、16和12。a、b、c表示显著性差异组别(α = 0.05)。
Fig. 3 Discharge of stem stored water and its contribution to transpiration for three tree species (mean ± SD). WS n, normalized discharge of stem stored water; Trn, normalized transpiration; WSn/Trn, contribution of WSn to Trn. The sample sizes for Pinus koraiensis (HS), Populus davidiana (SY), and Quercus mongolica (ML) are 9, 16, and 12, respectively. a, b, and c stand for significant difference groups (α = 0.05).
图4 3树种树干储存水释放量与总蒸腾量的关系。HS, 红松; ML, 蒙古栎; SY, 山杨。
Fig. 4 Relationships between discharge of stem stored water and transpiration for three tree species. HS, Pinus koraiensis; ML, Quercus mongolica; SY, Populus davidiana.
图5 树干储存水释放量与干基边材面积及树高的关系。HS, 红松; ML, 蒙古栎; SY, 山杨。
Fig. 5 Discharge of stem stored water in relation to basal sapwood area and tree height. HS, Pinus koraiensis; ML, Quercus mongolica; SY, Populus davidiana.
[1] | Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998). Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment, 21,397-406. |
[2] | Granier A (1985). A new method of sap flow measurement in tree stems. Annals of Forest Science, 42,193-200. |
[3] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3,309-320.
URL PMID |
[4] | Holbrook NM (1995). Stem water storage. In: Gartner BL ed. Plant Stems: Physiological and Functional Morphology. Academic Press, San Diego, USA. 151-174. |
[5] | Holbrook NM, Sinclair TR (1992). Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant, Cell & Environment, 15,401-409. |
[6] | Huang ZG (黄志刚), Li FR (李锋瑞), Cao Y (曹云), Ouyang ZY (欧阳志云), Li XQ (李锡泉), Tian YX (田育新), Wang ZJ (王中建), Liu H (柳辉) (2007). Ecological benefit of soil and water conservation of Eucommia ulmoides and Vernica fordii plantation in hilly red soil region, southern China. Scientia Silvae Sinicae (林业科学), 43(8),8-14. (in Chinese with English abstract) |
[7] | James SA, Clearwater MJ, Meinzer FC, Goldstein G (2002). Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology, 22,277-283. |
[8] | Jiang GM (蒋高明), Chang J (常杰), Gao YB (高玉葆), Li YG (李永庚) (2004). Plant Ecophysiology (植物生理生态学). Higher Education Press, Beijing. (in Chinese) |
[9] | Kobayashi Y, Tanaka T (2001). Water flow and hydraulic characteristics of Japanese red pine and oak trees. Hydrological Processes, 15,1731-1750. |
[10] | Logullo MA, Salleo S (1992). Water storage in the wood and xylem cavitation in 1-year-old twigs of Populus deltoides Bartr. Plant, Cell & Environment, 15,431-438. |
[11] | Loustau D, Domec JC, Bosc A (1998). Interpreting the variations in xylem sap flux density within the trunk of maritime pine ( Pinus pinaster Ait.): application of a model for calculating water flows at tree and stand levels. Annals of Forest Science, 55,29-46. |
[12] | Maherali H, DeLucia EH (2001). Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Oecologia, 129,481-491. |
[13] | Meinzer FC (2002). Co-ordination of vapour and liquid phase water transport properties in plants. Plant, Cell & Environment, 25,265-274. |
[14] | Meinzer FC, Bond BJ, Karanian JA (2008). Biophysical constraints on leaf expansion in a tall conifer. Tree Physiology, 28,197-206. |
[15] |
Meinzer FC, James SA, Goldstein G (2004). Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiology, 24,901-909.
URL PMID |
[16] | Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Čermák J (2003). Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 23,237-245. |
[17] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47,235-242. |
[18] |
Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007). Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees. Plant, Cell & Environment, 30,236-248.
URL PMID |
[19] |
Steppe K, Lemeur R (2007). Effects of ring-porous and diffuse- porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiology, 27,43-52.
URL PMID |
[20] | Sun HZ (孙慧珍), Li YP (李夷平), Wang C (王翠), Zhou XF (周晓峰) (2005a). Comparative study on stem sap flow of non- and ring-porous tree species. Chinese Journal of Ecology (生态学杂志), 24,1434-1439. (in Chinese with English abstract) |
[21] | Sun HZ (孙慧珍), Sun L (孙龙), Wang CK (王传宽), Zhou XF (周晓峰) (2005b). Sap flow of the major tree species in the eastern mountainous region in Northeast China. Scientia Silvae Sinicae(林业科学), 41(3),36-42. (in Chinese with English abstract) |
[22] | Tan HC (谭红朝), Li YY (李秧秧) (2007). Advance in tree stem diameter changes and its relationship to water transport and water storage. Journal of Northwest Forestry University (西北林学院学报), 22(6),51-55. (in Chinese with English abstract) |
[23] |
Verbeeck H, Steppe K, Nadezhdina N, Op de Beeck M, Deckmyn G, Meiresonne L, Lemeur R, Cermak J, Ceulemans R, Janssens IA (2007). Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Physiology, 27,1671-1685.
URL PMID |
[24] | Wang XC, Wang CK, Zhang QZ, Quan XK (2010). Heartwood and sapwood allometry of seven Chinese temperate tree species. Annals of Forest Science, 67,410. |
[25] |
Wullschleger SD, Meinzer FC, Vertessy RA (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18,499-512.
URL PMID |
[26] | Xi RC (奚如春), Ma LY (马履一), Fan M (樊敏), Li LP (李丽萍), Kong JJ (孔俊杰), Wang RH (王瑞辉) (2007). Water capacity of branches and stems of Pinus tabulaeformis and its impact on transpiring water consumption. Journal of Beijing Forestry University (北京林业大学学报), 29(1),160-165. (in Chinese with English abstract) |
[27] | Zhao P (赵平) (2010). Compensation of tree water storage for hydraulic limitation: research progress. Chinese Journal of Applied Ecology(应用生态学报), 21,1565-1572. (in Chinese with English abstract) |
[28] | Zhao P (赵平), Rao XQ (饶兴权), Ma L (马玲), Cai XA (蔡锡安), Zeng XP (曾小平) (2006). The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium. Acta Ecologica Sinica (生态学报), 26,4050-4058. (in Chinese with English abstract) |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[5] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[6] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[7] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[10] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[11] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[12] | 李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 2021, 45(12): 1365-1379. |
[13] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[14] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[15] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19