植物生态学报 ›› 2012, Vol. 36 ›› Issue (9): 1004-1014.DOI: 10.3724/SP.J.1258.2012.01004
• 综述 • 上一篇
收稿日期:
2012-04-20
接受日期:
2012-05-31
出版日期:
2012-04-20
发布日期:
2012-09-06
通讯作者:
王辉民
作者简介:
(E-mail: wanghm@igsnrr.ac.cn)
XU Fei1,2, YANG Feng-Ting1, WANG Hui-Min1,*(), DAI Xiao-Qin1
Received:
2012-04-20
Accepted:
2012-05-31
Online:
2012-04-20
Published:
2012-09-06
Contact:
WANG Hui-Min
摘要:
树干液流径向分布的不均匀性是引起热技术估算单株乃至林分蒸腾误差的主要来源。因此, 了解树干液流径向分布格局并将其定量化, 成为利用热扩散和热脉冲技术准确估算森林蒸腾的必要条件。该文详细介绍了树干液流径向分布格局的研究方法, 总结了目前4种常见的树干液流的径向分布格局, 分析了影响树干液流径向分布格局的内部结构因素和外部环境因素, 阐明了树干液流径向分布格局的时间动态特征及其影响因素, 并提出目前研究中存在的问题和可能的解决方法。
徐飞, 杨风亭, 王辉民, 戴晓琴. 树干液流径向分布格局研究进展. 植物生态学报, 2012, 36(9): 1004-1014. DOI: 10.3724/SP.J.1258.2012.01004
XU Fei, YANG Feng-Ting, WANG Hui-Min, DAI Xiao-Qin. Review of advances in radial patterns of stem sap flow. Chinese Journal of Plant Ecology, 2012, 36(9): 1004-1014. DOI: 10.3724/SP.J.1258.2012.01004
图1 树干液流径向分布的4种主要格局(引自James et al., 2002, 2003; Nadezhdina et al., 2007)。
Fig. 1 Four main radial patterns of stem sap flow (Cited from James et al., 2002, 2003; Nadezhdina et al., 2007).
1 | Bao FC ( 鲍甫成), Jiang ZH ( 江泽慧 ) (1998). Wood Properties of Main Tree Species from Plantation in China (中国主要人工林树种木材性质). China Forestry Publishing House, Beijing. 1-48. (in Chinese) |
2 | Bush SE, Hultine KR, Sperry JS, Ehleringer JR ( 2010). Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees. Tree Physiology, 30, 1545-1554. |
3 | Cermák J, Cienciala E, Kucera J, Hällgren JE ( 1992). Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of spruce to severing. Tree Physiology, 10, 367-380. |
4 | Cermák J, Hruska J, Martinkova M, Prax A ( 2000). City tree roots and survival near houses analyzed using sap flow and ground penetrating radar technique. Plant Soil, 219, 103-116. |
5 | Chapin FS III, Mooney HA, Chapin MC, Matson P ( 2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York. 66. |
6 | Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM ( 1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 19, 681-687. |
7 | Cohen Y, Cohen S, Cantuarias-Aviles T, Schiller G ( 2008). Variations in the radial gradient of sap velocity in trunks of forest and fruit trees. Plant and Soil, 305, 49-59. |
8 | Delzon S, Sartore M, Granier A, Loustau D ( 2004). Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 24, 1285-1293. |
9 | Dimond AE ( 1966). Pressure and flow relations in vascular bundles of the tomato plant. Plant Physiology, 41, 119-131. |
10 | Domec JC, Pruyn ML, Gartner BL ( 2005). Axial and radial profiles in conductivities, water storage and native embolism in trunks of young and old-growth ponderosa pine trees. Plant, Cell & Environment, 28, 1103-1113. |
11 | Dye PJ, Olbrich BW, Poulter AG ( 1991). The influence of growth rings in Pinus patula on heat pulse velocity and sap flow measurement. Journal of Experimental Botany, 42, 867-870. |
12 | Edwards WRN, Booker RE ( 1984). Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement. Journal of Experimental Botany, 35, 551-561. |
13 | Flora A, Cescatti A ( 2006). Diurnal and seasonal variability in radial distribution of sap flux density: implications for estimating stand transpiration. Tree Physiology, 26, 1217-1225. |
14 | Flora A, Cescatti A ( 2008). Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies. Tree Physiology, 28, 1317-1323. |
15 |
Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO ( 2004a). Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology, 24, 951-960.
URL PMID |
16 | Ford CR, Mcguire MA, Mitchell RJ, Teskey RO ( 2004b). Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiology, 24, 241-249. |
17 | Frank WE ( 1985). Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bulletin, 6, 309-317. |
18 | Gebauer T, Horna V, Leuschner C ( 2008). Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiology, 28, 1821-1830. |
19 | Gebler A, Rienks M, Dopatka T, Rennenberg H ( 2005). Radial variation of sap flow densities in the sap-wood of beech trees ( Fagus sylvatica). Phyton-Annales Rei Botanicae, 45, 257-266. |
20 | Granier A ( 1985). A new method to measure the raw sap flux in the trunk of trees. Annals of Forest Science, 42, 193-200 |
21 | Granier A, Anfodillo T, Sabatti M, Coehard H, Dreyer E, Tomasi M, Valenrini R, Bréda N ( 1994). Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiology, 14, 1383-1396. |
22 | Granier A, Biron P, Bréda N, Pontailler JY, Saugier B ( 1996a). Transpiration of trees and forest stands: short and long-term monitoring using sap flow methods. Global Change Biology, 2, 265-274. |
23 | Granier A, Huc R, Barigah ST ( 1996b). Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteorology, 78, 19-29. |
24 | Hatton TJ, Catchpole EA, Vertessy RA ( 1990). Integration of sap flow velocity to estimate plant water use. Tree Physiology, 6, 201-209. |
25 | Hatton TJ, Wu HI ( 1995). Scaling theory to extrapolate individual tree water use to stand water use. Hydrological Processes, 9, 527-540. |
26 |
Huang YQ ( 黄玉清), Zhang ZF ( 张中峰), He CX ( 何成新), Zhao P ( 赵平), Yuan WH ( 袁维国), Jiao JF ( 焦继飞), You YM ( 尤业明 ) ( 2009). Seasonal variation of Cyclobalanopsis glauca whole-tree transpiration in karst region. Chinese Journal of Applied Ecology (应用生态学报), 20, 256-264. (in Chinese with English abstract)
URL PMID |
27 | Huber B ( 1932). Beobachtung und messung pflanzicher saftstrome. Berichte der Deutschen Botanischen Gesell- schaft, 50, 89-109. |
28 | Irvine J, Law BE, Kurpius MR, Anthoni PM, Moore D, Schwarz PA ( 2004). Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiology, 24, 753-763. |
29 | James SA, Clearwater MJ, Meinzer FC, Goldstein G ( 2002). Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology, 22, 277-283. |
30 | James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, Mejia M, Clearwater M, Campanello P ( 2003). Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia, 134, 37-45. |
31 | Jiménez MS, Nadezhdina N, Čermák J, Morales D ( 2000). Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands. Tree Physiology, 20, 1149-1156. |
32 | Köstner B, Granier A, Cermák J ( 1998). Sap flow measurements in forest stands: methods and uncertainties. Annales Des Sciences Forestières, 55(1-2), 13-27. |
33 | Kubota M, Tenhunen J, Zimmermann R, Schmidt M, Adiku S, Kakubari Y ( 2005). Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan. Tree Physiology, 25, 545-556. |
34 | Kumagai T, Aoki S, Nagasawa H, Mabuchi T, Kubota K, Inoue S, Utsumi Y, Otsuki K ( 2005). Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology, 135, 110-116. |
35 | Kuroda K, Kanbara Y, Inoue T, Ogawa A ( 2006). Magnetic resonance micro-imaging of xylem sap distribution and necrotic lesions in tree stems. IAWA Journal, 27, 3-17. |
36 | Lambs L, Muller É ( 2002). Sap flow and water transfer in the Garonne River riparian woodland, France: first results on poplar and willow. Annals of Forest Science, 59, 301-315. |
37 | Li HT ( 李海涛), Xiang L ( 向乐), Xia J ( 夏军), Lin YM ( 林耀明), Liang T ( 梁涛 ) ( 2006). Applying the heat dissipation technique to study the sap flow of Pinus elliottii in the red earth area of subtropical China. Scientia Silvae Sinicae (林业科学), 42(10), 31-38. (in Chinese with English abstract) |
38 | Liu C ( 刘超), Li CY ( 李春友), Zhang JS ( 张劲松), Meng P ( 孟平), Jia CR ( 贾长荣 ) ( 2011). Radial variation of sap flow in Ligustrum lucidum Ait during growing season. Chinese Journal of Agrometeorology (中国农业气象), 32, 196-202. (in Chinese with English abstract) |
39 | Liu FJ ( 刘奉觉), Edwards WRN, Zheng SK ( 郑世锴), Ju GS ( 巨关升), Wang GJ ( 王广举), Lu YN ( 卢永农 ) ( 1993). A study on the dynamics of sap flow in space and time in poplar stems. Forest Research (林业科学研究), 6, 368-372. (in Chinese with English abstract) |
40 | Lu P, Muller WJ, Chacko EK ( 2000). Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 20, 683-692. |
41 | Lu P, Urban L, Zhao P ( 2004). Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica, 46, 631-646. |
42 | Lundblad M, Lagergren F, Lindroth A ( 2001). Evaluation of heat balance and heat dissipation methods for sap flow measurements in pine and spruce. Annals of Forest Science, 58, 625-638. |
43 | Luttschwager D, Remus R ( 2007). Radial distribution of sap flux density in trunks of a mature beech stand. Annals of Forest Science, 64, 431-438. |
44 | Ma L ( 马玲), Zhao P ( 赵平), Rao XQ ( 饶兴权), Cai XA ( 蔡锡安), Zeng XP ( 曾小平 ) ( 2005). Main determination methods of tree transpiration. Chinese Journal of Ecology (生态学杂志), 24, 88-96. (in Chinese with English abstract) |
45 | Nadezhdina N, Cermák J ( 2003). Instrumental methods for studies of structure and function of root systems in large trees. Journal of Experimental Botany, 54, 1511-1521. |
46 | Nadezhdina N, Čermák J, Ceulemans R ( 2002). Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 22, 907-918. |
47 | Nadezhdina N, Ferreira MI, Silva R, Pacheco CA (2004). Seasonal changes in water use of evergreen oak woodlands—Sap flow in roots and stem of Quercus suber tree. In: Ferreira MI ed. Workshop of Water Use of Woody Crops. Techniques, Issues, Modeling and Applications on Water Management. May 2004, Ilhavo, Portugal. 40-41. |
48 | Nadezhdina N, Nadezhdin V, Ferreira MI, Pitacco A ( 2007). Variability with xylem depth in sap flow in trunks and branches of mature olive trees. Tree Physiology, 27, 105-113. |
49 | Oren R, Phillips N, Katul G, Ewers BE, Pataki DE ( 1998). Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests. Annals of Forest Science, 55, 191-216. |
50 | Pausch RC, Grote EE, Dawson TE ( 2000). Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood. Tree Physiology, 20, 217-227. |
51 | Petty JA, Puritch GS ( 1970). The effects of drying on the structure and permeability of the wood of Abies grandis. Wood Science and Technology, 4, 140-154. |
52 | Phillips N, Oren R, Zimmermann R ( 1996). Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant, Cell & Environment, 19, 983-990. |
53 | Poyatos R, Čermák J, Llorens P ( 2007). Variation in the radial patterns of sap flux density in pubescent oak ( Quercus pubescens) and its implications for tree and stand trans- piration measurements. Tree Physiology, 27, 537-548. |
54 | Sano Y, Okamura Y, Utsumi Y ( 2005). Visualizing water- conduction pathways of living trees: selection of dyes and tissue preparation methods. Tree Physiology, 25, 269-275. |
55 | Scheenen T, Heemskerk A, de Jager A, Vergeldt F, van As H ( 2002). Functional imaging of plants: a nuclear magnetic resonance study of a cucumber plant. Biophysical Journal, 82, 481-492. |
56 | Scheenen TWJ, Vergeldt FJ, Heemskerk AM, van As H ( 2007). Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiology, 144, 1157-1165. |
57 | Smith DM, Allen SJ ( 1996). Measurement of sap flow in plant stems. Journal of Experimental Botany, 47, 1833-1844. |
58 | Sperry JS, Perry AH, Sullivan JEM ( 1991). Pit membrane degradation and air-embolism formation in ageing xylem vessels of Populus tremuloides Michx. Journal of Experimental Botany, 42, 1399-1406. |
59 | Spicer R, Gartner BL ( 2001). The effects of cambial age and position within the stem on specific conductivity in Douglas-fir ( Pseudotsuga menziesii) sapwood. Trees, 15, 222-229. |
60 | Sun HZ ( 孙慧珍), Kang SZ ( 康绍忠), Hu XT ( 胡笑涛 ) ( 2008). The radial distribution of xylem sap flow velocity in trunks of pear trees. Acta Horticulturae Sinica (园艺学报), 35, 937-944. |
61 | Sun HZ ( 孙慧珍), Li YP ( 李夷平), Wang C ( 王翠), Zhou XF ( 周晓峰 ) ( 2005). Comparative study on stem sap flow of non-and ring-porous tree species. Chinese Journal of Ecology (生态学杂志), 24, 1434-1439. (in Chinese with English abstract) |
62 | Sun HZ ( 孙慧珍), Zhou XF ( 周晓峰), Zhao HX ( 赵慧勋 ) ( 2002). A researches on stem sap flow dynamics of Betula platyphylla. Acta Ecologica Sinica (生态学报), 22, 1387-1391. (in Chinese with English abstract) |
63 | Sun PS ( 孙鹏森), Ma LY ( 马履一), Wang XP ( 王小平), Zhai MP ( 翟明普 ) ( 2000). Temporal and spatial variation of sap flow of Chinese pine (Pinus tabulaeformis). Journal of Beijing Forestry University (北京林业大学学报), 22(5), 1-6. (in Chinese with English abstract) |
64 | Tateishi M, Kumagai T, Utsumi Y, Umebayashi T, Shiiba Y, Inoue K, Kaji K, Cho K, Otsuki K ( 2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees-Structure and Function, 22, 23-30. |
65 | Tu J ( 涂洁), Liu QJ ( 刘琪璟 ) ( 2007). Sap flow scaling-up of artificial Pinus elliottii forests in subtropical red earth area and its response to environmental factors. Journal of Soil and Water Conservation (水土保持学报), 21, 197-200. (in Chinese with English abstract) |
66 | Wang H ( 王华), Ouyang ZY ( 欧阳志云), Zheng H ( 郑华), Wang XK ( 王效科), Ni YM ( 倪永明), Ren YF ( 任玉芬 ) ( 2010). Characteristics of spatial variations in xylem sap flow in urban greening tree species Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia in Beijing, China. Chinese Journal of Plant Ecology (植物生态学报), 34, 924-937. (in Chinese with English abstract) |
67 | Wang HT ( 王华田), Ma LY ( 马履一), Sun PS ( 孙鹏森 ) ( 2002). Sap flow fluctuations of Pinus tabulaeformis and Platycladus Orientalis in late autumn. Scientia Silvae Sinicae (林业科学), 38(5), 31-37. (in Chinese with English abstract) |
68 | Wang RH ( 王瑞辉), Ma LY ( 马履一), Li LP ( 李丽萍), Fan M ( 樊敏), Kong JJ ( 孔俊杰 ) ( 2006). Temporal and spacial variations of stem sap flow of Acer truncatum Bunge. Journal of Beijing Forestry University (北京林业大学学报), 28(Suppl. 2), 12-18. (in Chinese with English abst- ract) |
69 | Whirehead D, Sheriff DW, Greer DH ( 1983). The relationship between stomatal conductance, transpiration rate and tracheid structure in Pinus radiata clones grown at different water vapour saturation deficits. Plant, Cell & Environment, 6, 703-710. |
70 | Wullschleger SD, King AW ( 2000). Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow poplar trees. Tree Physiology, 20, 511-518. |
71 | Wullschleger SD, Meinzer FC, Vertessy RA ( 1998). A review of whole-plant water use studies in tree. Tree Physiology, 18, 499-512. |
72 | Zang D, Beadle CL, White DA ( 1996). Variation of sapflow velocity in Eucalyptus globulus with position in sapwood and use of a correction coefficient. Tree Physiology, 16, 697-703. |
73 | Zhao ZH ( 赵仲辉), Kang WX ( 康文星), Tian DL ( 田大伦), Xiang WH ( 项文化), Yan WD ( 闫文德 ) ( 2009). Sap flow rate and its relationship with environmental factors of Chinese fir plantation in Huitong, Hunan Province. Scientia Silvae Sinicae (林业科学), 45, 127-132. (in Chinese with English abstract) |
74 | Zheng HZ ( 郑怀周), Zhu JM ( 朱锦懋), Wei X ( 魏霞), Li SZ ( 李守中 ) ( 2007). Review on the five thermodynamic technology applied in the research of sap flow. Journal of Fujian Normal University (Natural Science Edition) (福建师范大学学报(自然科学版)), 23(2), 119-123. (in Chinese with English abstract) |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[5] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[6] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[7] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[8] | 李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 2021, 45(12): 1365-1379. |
[9] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[10] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[11] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[12] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[13] | 杨军军, 封建民, 何志斌. 基于热比率法的青海云杉林蒸腾量估算[J]. 植物生态学报, 2018, 42(2): 195-201. |
[14] | 张振振, 赵平, 赵秀华, 张锦秀, 朱丽薇, 欧阳磊, 张笑颜. 环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响[J]. 植物生态学报, 2018, 42(12): 1179-1191. |
[15] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19