植物生态学报 ›› 2011, Vol. 35 ›› Issue (8): 789-800.DOI: 10.3724/SP.J.1258.2011.00789
所属专题: 稳定同位素生态学
• 研究论文 • 下一篇
周雅聃1,2, 陈世苹1, 宋维民1,2, 卢琦3, 林光辉1,4,*()
收稿日期:
2010-02-21
接受日期:
2011-04-29
出版日期:
2011-02-21
发布日期:
2011-07-28
通讯作者:
林光辉
作者简介:
*E-mail: ghlin@ibcas.ac.cn, lingh@tsinghua.edu.cn
ZHOU Ya-Dan1,2, CHEN Shi-Ping1, SONG Wei-Min1,2, LU Qi3, LIN Guang-Hui1,4,*()
Received:
2010-02-21
Accepted:
2011-04-29
Online:
2011-02-21
Published:
2011-07-28
Contact:
LIN Guang-Hui
摘要:
自然降水是干旱、半干旱地区荒漠植物重要的水分来源。为了说明自然降水量的变化对干旱、半干旱地区荒漠植物水分利用策略的影响, 研究了两种常见荒漠植物油蒿(Artemisia ordosica)和白刺(Nitraria tangutorum)在3个不同自然降水地区(内蒙古的杭锦旗和磴口县及甘肃的民勤县)的水分来源、水分利用效率及植物的抗逆能力的变化。测定了不同地区的植物茎水、各潜在水源(降水、地下水和土壤水)的δD和δ18O值, 并利用IsoSource模型分析了这两种植物在不同地区对这些潜在水源的选择性利用情况; 同时测定了叶片的δ13C和游离脯氨酸浓度。结果表明: 在年降水量最高的杭锦旗, 这两种植物对浅层土壤水的利用比例最高, 其中油蒿主要利用0-50 cm土层中的水源; 在年降水量相对较低的磴口和民勤, 植物利用的主要水源为深层土壤水和地下水。随着年降水量的增加, 这两种植物的水分利用效率逐渐降低。白刺的脯氨酸浓度大于油蒿, 与水分利用效率无关, 但油蒿的水分利用效率和脯氨酸浓度成正比。研究表明, 荒漠植物能通过改变其水分利用策略和其他生理特性适应自然降水量的变化, 但不同植物种采用的策略可能有所不同。
周雅聃, 陈世苹, 宋维民, 卢琦, 林光辉. 不同降水条件下两种荒漠植物的水分利用策略. 植物生态学报, 2011, 35(8): 789-800. DOI: 10.3724/SP.J.1258.2011.00789
ZHOU Ya-Dan, CHEN Shi-Ping, SONG Wei-Min, LU Qi, LIN Guang-Hui. Water-use strategies of two desert plants along a precipitation gradient in northwestern China. Chinese Journal of Plant Ecology, 2011, 35(8): 789-800. DOI: 10.3724/SP.J.1258.2011.00789
研究点 Study site | 经纬度 Latitude and longitude | 年平均降水量Annual precipitation (mm) | 地下水位Groundwater table (m) | 植被类型 Vegetation type | 优势种Dominant species | 潜在水源的δ18O δ18O value of potential water source (‰) | 有机碳 Organic C (g·kg-1) | 全N Total N (g·kg-1) | 全P Total P (g·kg-1) | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
降水Rain | 地下水Groundwater | ||||||||||
甘肃民勤 Minqin, Gansu | 38°36′ N, 102°56′ E | 113 | 10-20 | 灌丛化荒漠 Desert shrub | 白刺 Nitraria tangutorum | -4.04 | -9.27 | 1.83 ± 0.07 | 0.18 ± 0.04 | 8.93 ± 0.07 | |
内蒙古磴口Dengkou, Inner Mongolia | 40°18′ N, 106°56′ E | 145 | 1.5-3.0 | 灌丛化荒漠 Desert shrub | 白刺 Nitraria tangutorum, 油蒿 Artemisia ordosica | -7.60 | -9.63 | 1.58 ± 0.13 | 0.16 ± 0.02 | 0.08 ± 0.01 | 8.67 ± 0.09 |
内蒙古杭锦旗Hangjin Qi, Inner Mongolia | 40°28' N, 108°37' E | 258 | 1.7 | 灌丛化荒漠Desert shrub | 油蒿 Artemisia ordosica | -0.81 | -9.64 | 1.78 ± 0.09 | 0.13 ± 0.01 | 8.70 ± 0.21 |
表1 三个研究样点的概况
Table 1 Major characteristics of three sites
研究点 Study site | 经纬度 Latitude and longitude | 年平均降水量Annual precipitation (mm) | 地下水位Groundwater table (m) | 植被类型 Vegetation type | 优势种Dominant species | 潜在水源的δ18O δ18O value of potential water source (‰) | 有机碳 Organic C (g·kg-1) | 全N Total N (g·kg-1) | 全P Total P (g·kg-1) | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
降水Rain | 地下水Groundwater | ||||||||||
甘肃民勤 Minqin, Gansu | 38°36′ N, 102°56′ E | 113 | 10-20 | 灌丛化荒漠 Desert shrub | 白刺 Nitraria tangutorum | -4.04 | -9.27 | 1.83 ± 0.07 | 0.18 ± 0.04 | 8.93 ± 0.07 | |
内蒙古磴口Dengkou, Inner Mongolia | 40°18′ N, 106°56′ E | 145 | 1.5-3.0 | 灌丛化荒漠 Desert shrub | 白刺 Nitraria tangutorum, 油蒿 Artemisia ordosica | -7.60 | -9.63 | 1.58 ± 0.13 | 0.16 ± 0.02 | 0.08 ± 0.01 | 8.67 ± 0.09 |
内蒙古杭锦旗Hangjin Qi, Inner Mongolia | 40°28' N, 108°37' E | 258 | 1.7 | 灌丛化荒漠Desert shrub | 油蒿 Artemisia ordosica | -0.81 | -9.64 | 1.78 ± 0.09 | 0.13 ± 0.01 | 8.70 ± 0.21 |
冠幅 Crown diameter (cm) | 高 Height (cm) | 地径 Diameter at ground height (cm) | 根深 Root depth (cm) | ||
---|---|---|---|---|---|
白刺 Nitraria tangutorum | 民勤 Minqin | 323.33 ± 39.10 | 70.33 ± 7.67 | 0.89 ± 0.04 | >200 |
磴口 Dengkou | 331.75 ± 3.79 | 85.28 ± 4.92 | 0.81 ± 0.05 | >200 | |
杭锦旗 Hanggin Banner | 355.67 ± 18.22 | 120.33 ± 12.91 | 0.93 ± 0.11 | >150 | |
油蒿 Artemisia ordosica | 民勤 Minqin | 108.00 ± 2.2 | 89.50 ± 4.99 | 1.24 ± 0.10 | 150.00 ± 32.15 |
磴口 Dengkou | 120.00 ± 6.76 | 82.25 ± 3.54 | 1.26 ± 0.17 | 133.33 ± 36.09 | |
杭锦旗 Hanggin Banner | 129.75 ± 9.75 | 81.75 ± 5.27 | 1.22 ± 0.09 | 88.00 ± 18.90 |
表2 3个采样地点白刺和油蒿灌丛的形态特征
Table 2 Morphological characteristics of Artemisia ordosica and Nitraria tangutorum in three study sites
冠幅 Crown diameter (cm) | 高 Height (cm) | 地径 Diameter at ground height (cm) | 根深 Root depth (cm) | ||
---|---|---|---|---|---|
白刺 Nitraria tangutorum | 民勤 Minqin | 323.33 ± 39.10 | 70.33 ± 7.67 | 0.89 ± 0.04 | >200 |
磴口 Dengkou | 331.75 ± 3.79 | 85.28 ± 4.92 | 0.81 ± 0.05 | >200 | |
杭锦旗 Hanggin Banner | 355.67 ± 18.22 | 120.33 ± 12.91 | 0.93 ± 0.11 | >150 | |
油蒿 Artemisia ordosica | 民勤 Minqin | 108.00 ± 2.2 | 89.50 ± 4.99 | 1.24 ± 0.10 | 150.00 ± 32.15 |
磴口 Dengkou | 120.00 ± 6.76 | 82.25 ± 3.54 | 1.26 ± 0.17 | 133.33 ± 36.09 | |
杭锦旗 Hanggin Banner | 129.75 ± 9.75 | 81.75 ± 5.27 | 1.22 ± 0.09 | 88.00 ± 18.90 |
图1 2009年3个研究样点降水量的分布和取样前雨水的δ18O值。箭头指示的是植物茎样取样时间。
Fig. 1 Precipitation distribution and the δ 18O value of precipitation before sampling in 2009 at three study sites. The arrows indicate the date when plant stem samples were collected.
图2 3个站点植物茎水、雨水和地下水氢氧同位素值的分布特征。直线为全球大气降水线(GMWL) (δD = 8.17 × δ18O + 10.35; Rozanski et al. 1993), 土壤水旁边的标记为土层深度, 雨水旁边的标记为降水日期, 误差线为标准误差 (n = 3)。
Fig. 2 Distribution characteristics of δD and δ 18O values of stem water, rain and groundwater at three study sites. The straight line is global meteoric water line (GMWL) (δD = 8.17 ×δ18O + 10.35; Rozanski et al. 1993). The soil depth was listed next to the symbols for soil water and the date besides the rain symbols indicated the time of each rain event. Error bar represents SE (n = 3).
图3 3个研究样点植物茎水、土壤水、取样前雨水以及地下水的δ18O值。浅灰色阴影指示取样前的雨水氧同位素比值范围, 深灰色阴影指示地下水氧同位素比值范围。误差线为标准误差(n = 3)。
Fig. 3 δ18O of stem water, soil water, rain before sampling and groundwater at three study sites. The light dark shadow bars indicate the ranges of δ 18O for rain water, and the deep dark bars indicate those of groundwater. Error bar represents SE (n = 3).
水分来源 Water source | δ18O‰ | 民勤Minqin | δ18O‰ | 磴口Dengkou | δ18O‰ | 杭锦旗Hangjin Qi | ||||
---|---|---|---|---|---|---|---|---|---|---|
油蒿 A. ordosica | 白刺 N. tangutorum | 油蒿 A. ordosica | 白刺 N. tangutorum | 油蒿 A. ordosica | 白刺 N. tangutorum | |||||
土壤深度 Soil depth | 0-10 cm | 13.6 | 16.70 (0-50) | 1.90 (0-8) | 9.90 | 3.90 (0-16) | 0 (0-1) | 0.30 | 40.60 (0-72) | 11.60 (0-27) |
10-50 cm | 6.1 | 23.00 (0-75) | 3.00 (0-12) | 2.20 | 6.30 (0-25) | 0.20 (0-1) | -1.80 | 37.70 (0-91) | 14.50 (0-35) | |
50-100 cm | 0.7 | 23.90 (0-89) | 4.90 (0-19) | -2.90 | 10.30 (0-41) | 0.60 (0-2) | -8.70 | 11.40 (0-32) | 37.10 (0-82) | |
100-150 cm | -1.4 | 21.60 (0-77) | 6.40 (0-25) | -8.50 | 29.70 (0-97) | 2.70 (0-8) | ||||
地下水 Groundwater | -9.3 | 14.90 (0-50) | 83.90 (75-92) | -11.50 | 49.90 (0-84) | 96.50 (92-99) | -9.60 | 10.30 (0-29) | 36.80 (0-74) |
表3 3个不同研究点油蒿和白刺对各水源的利用比例(%) (平均值(最小值-最大值))
Table 3 Proportions of feasible water sources (%) for Artemisia ordosica and Nitraria tangutorum at three study sites (mean (min-max))
水分来源 Water source | δ18O‰ | 民勤Minqin | δ18O‰ | 磴口Dengkou | δ18O‰ | 杭锦旗Hangjin Qi | ||||
---|---|---|---|---|---|---|---|---|---|---|
油蒿 A. ordosica | 白刺 N. tangutorum | 油蒿 A. ordosica | 白刺 N. tangutorum | 油蒿 A. ordosica | 白刺 N. tangutorum | |||||
土壤深度 Soil depth | 0-10 cm | 13.6 | 16.70 (0-50) | 1.90 (0-8) | 9.90 | 3.90 (0-16) | 0 (0-1) | 0.30 | 40.60 (0-72) | 11.60 (0-27) |
10-50 cm | 6.1 | 23.00 (0-75) | 3.00 (0-12) | 2.20 | 6.30 (0-25) | 0.20 (0-1) | -1.80 | 37.70 (0-91) | 14.50 (0-35) | |
50-100 cm | 0.7 | 23.90 (0-89) | 4.90 (0-19) | -2.90 | 10.30 (0-41) | 0.60 (0-2) | -8.70 | 11.40 (0-32) | 37.10 (0-82) | |
100-150 cm | -1.4 | 21.60 (0-77) | 6.40 (0-25) | -8.50 | 29.70 (0-97) | 2.70 (0-8) | ||||
地下水 Groundwater | -9.3 | 14.90 (0-50) | 83.90 (75-92) | -11.50 | 49.90 (0-84) | 96.50 (92-99) | -9.60 | 10.30 (0-29) | 36.80 (0-74) |
图4 3个研究样点油蒿和白刺叶片的δ13C值比较(平均值±标准误差, n = 3)。不同大写字母表示差异显著(p < 0.05)。
Fig. 4 Comparison of foliar δ 13C values of Artemisia ordosica and Nitraria tangutorum among three study sites (mean ± SE, n = 3). Different capital letters designate significant difference at p < 0.05.
图5 3个研究样点间两种荒漠植物叶片脯氨酸含量的比较(平均值±标准误差, n = 3)。不同大写字母表示差异显著(p < 0.05)。
Fig. 5 Comparison of foliar proline contents of Artemisia ordosica and Nitraria tangutorum in three study sites (mean ± SE, n = 3). Different capital letters designate significant difference at p < 0.05.
[1] | Chai CW (柴成武), Xu XY (徐先英), Tang WD (唐卫东), Wang FL (王方琳), Wang L (王龙) (2009). Root system of the main sand fixing plants in desert zone of Shiyanghe river basin. Journal of Northwest Forestry University (西北林学院学报), 24(4),21-26. (in Chinese with English abstract) |
[2] | Chang YC, Lee TM (1999). High temperature-induced free proline accumulation in Gracilaria tenuistipitata (Rhodophyta) . Botanical Bulletin of Academia Sinica, 40,289-294. |
[3] |
Chen S, Bai Y, Lin G, Huang J, Han X (2007). Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments, 71,12-28.
DOI URL |
[4] | Chen T (陈拓), Feng HY (冯虎元), Xu SJ (徐世建), Qiang WY (强维亚), An LZ (安黎哲) (2002). Stable carbon isotope composition of desert plant leaves and water-use efficiency. Journal of Desert Research (中国沙漠), 22,288-291. (in Chinese with English abstract) |
[5] |
Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology, 184,1-12.
DOI URL |
[6] |
Chimner RA, Cooper DJ (2004). Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A. Plant and Soil, 260,225-236.
DOI URL |
[7] |
Dawson TE, Ehleringer JR (1991). Streamside trees that do not use stream water. Nature, 350,335-337.
DOI URL |
[8] |
Duan DY, Ouyang H, Song MH, Hu QW (2008). Water sources of dominant species in three alpine ecosystems on the Tibetan Plateau, China. Journal of Integrative Plant Biology, 50,257-264.
URL PMID |
[9] | E YH (俄有浩), Wang J (汪杰), Zhang JC (张锦春), Li AD (李爱德) (2001). Study on relationship between water resource variety and forestry soil moisture condition variety in Minqin area. Journal of Gansu Forestry Science and Technology (甘肃林业科技), 26(4),19-23. (in Chinese with English abstract) |
[10] |
Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou XH, Zanner CW (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C 4 grasses in a semiarid grassland . Tree Physiology, 29,157-169.
DOI URL PMID |
[11] | Ehleringer JR (1995). Variation in gas exchange characteristics among desert plants. Ecological Studies, 100,361-387. |
[12] |
Ehleringer JR, Cooper TA (1988). Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia, 76,562-566.
URL PMID |
[13] | Ehleringer JR, Dawson TE (1992). Water uptake by plants: perspectives from stable isotope composition. Plant, Cell & Environment, 15,1073-1082. |
[14] |
Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR (1991). Differential utilization of summer rains by desert plants. Oecologia, 88,430-434.
DOI URL PMID |
[15] |
Ellsworth PZ, Williams DG (2007). Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291,93-107.
DOI URL |
[16] |
Fang TL (樊廷录), Ma MS (马明生), Wang SY (王淑英), Li SZ (李尚中), Zhao G (赵刚) (2011). Stable carbon isotope ratio ( δ 13C) in flag leaves of different genotypes of winter wheat and its relation to yield and water use efficiency . Chinese Journal of Plant Ecology (植物生态学报), 35,203-213. (in Chinese with English abstract)
DOI URL |
[17] | Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9,121-137. |
[18] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11,539-552. |
[19] | Flanagan LB, Ehleringer JR, Marshall JD (1992). Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant, Cell & Environment, 15,831-836. |
[20] |
Fowler N (1986). The role of competition in plant communities in arid and semiarid regions. Annual Review of Ecology and Systematics, 17,89-110.
DOI URL |
[21] | Gerile (格日乐), Zhang MS (张力), Liu J (刘军), Ning RX (宁瑞些), Wuren TD (乌仁陶德)(2006). Soil moisture dynamic rule of artificial Haloxylon ammodendron froest in Kubuqi Desert . Journal of Arid Land Resources and Environment (干旱区资源与环境), 20,173-177. (in Chinese with English abstract) |
[22] | Haase P, Pugnaire FI, Clark SC, Incoll LD (1999). Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima . Plant Ecology, 145,327-339. |
[23] | He YH (何炎红), Guo LS (郭连生), Tian YL (田有亮) (2005). Photosynthetic rates and chlorophyll fluorescence of Nitraria tangutorum at different leaf water potentials . Acta Botanica Boreal-Occidentalia Sinica (西北植物学报), 25,2226-2233. (in Chinese with English abstract) |
[24] |
Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984). Molecular biology of osmoregulation. Science, 224,1064-1068.
URL PMID |
[25] | Li CS (李朝生), Yang XH (杨晓晖), Zhang KB (张克斌), Yu CT (于春堂), Ci LJ (慈龙骏) (2007). Response characteristics of precipitation, soil moisture and groundwater level in desert-oasis system. Journal of Beijing Forestry University (北京林业大学学报), 29(4),129-135. (in Chinese with English abstract) |
[26] | Li KR (李克让), Chen YF (陈育峰), Huang M (黄玫), Li XB (李晓兵), Ye ZJ (叶卓佳) (2000). Model studies of the impacts of climate change on land cover and its feedback. Acta Geographic Sinica (地理学报), 55(Suppl. 1),58-63. (in Chinese with English abstract) |
[27] |
Li QH (李清河), Zhang JB (张景波), Li HQ (李慧卿), Jiang ZP (江泽平), Wang ZG (王志刚) (2008). Responses of different provenances of Nitraria tangutorum seedlings in photosynthetic physiological and growth characteristics to water gradients. Scientia Silvae Sinicae (林业科学), 44,52-56. (in Chinese with English abstract)
DOI URL |
[28] |
Lin GH, Phillips SL, Ehleringer JR (1996). Monosoonal precipitation responses of shrubs in a cold desert community of the Colorado Plateau. Oecologia, 106,8-17.
URL PMID |
[29] | Lin GH, Sternberg LSL (1993). Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Ehleringer JR, Hall AE, Farquhar GD eds. Stable Isotopes and Plant Carbon/Water Relations., Academic Press, New York. |
[30] | Liu FM (刘发民), Zhang YH (张应华), Wu YQ (仵彦卿), Zhang XJ (张小军) (2002). Soil water regime under the shrubberies of Haloxylon ammodendron in the desert regions of the Heihe River watershed . Arid Zone Research (干旱区研究), 19,27-31. (in Chinese with English abstract) |
[31] |
Liu WJ, Liu WY, Li PJ, Duan WP, Li HM (2010). Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of Xishuangbanna, SW China. Agricultural and Forest Meteorology, 150,380-388.
DOI URL |
[32] | Ludlow MM, Santamaria JM, Fukai S (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. II. Water stress after anthesis . Australian Journal of Agricultural Research, 41,67-78. |
[33] | Ma JY, Chen T, Qiang WY, Wang G (2005). Correlations between foliar stable carbon isotope composition and environmental factors in desert plant Reaumuria soongorica (Pall.) Maxim . Journal of Integrate Plant Biology, 47,1065-1073. |
[34] | Ma JY (马剑英), Zhou BC (周邦才), Xia DS (夏敦胜), Zhang HW (张慧文), Jiang XL (江小雷) (2007). Relationships between environmental factors and chlorophyll, proline cumulation in desert plant Reaumuria soongorica . Acta Botanica Boreal-Occidentalia Sinica (西北植物学报), 27,769-775. (in Chinese with English abstract) |
[35] |
Maggio A, Reddy MP, Joly RJ (2000). Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity . Environmental and Experimental Botany, 44,31-38.
URL PMID |
[36] | Miller JM, Williams RJ, Farquhar GD (2001). Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia . Functional Ecology, 15,222-232. |
[37] | Morecroft MD, Woodward FI (1990). Experimental investigations on the environmental determination of δ 13C at different altitudes . Journal of Experimental Botany, 41,1303-1308. |
[38] | Naidu BP, Paleg LG, Jones GP (2000). Accumulation of proline analogues and adaptation of Melaleuca species to diverse environments in Australia . Australian Journal of Botany, 48,611-620. |
[39] | Neilson RP (1995). A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 5,362-385. |
[40] | Passioura JB (1982). Water in the soil-plant-atmosphere continuum. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology II: Water Relations and Carbon Assimilation. Encyclopedia of Plant Physiology, New Series, Vol 12B,5-33. |
[41] | Pausas JG, Austin MP (2001). Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science, 12,153-166. |
[42] |
Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136,261-269.
DOI URL PMID |
[43] |
Phillips DL, Newsome SD, Gregg JW (2005). Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144,520-527.
DOI URL PMID |
[44] | Qin JQ (秦佳琪), Tuoya (托亚), Ye DM (叶冬梅), He YH (何炎红), Tian YL (田有亮), Guo LS (郭连生) (2004). The research on soil moisture characteristics of different sandy land types in Wulanbuhe. Journal of Inner Mongolia Agricultural University (Natural Science Edition) (内蒙古农业大学学报(自然科学版)), 25(2),23-26. (in Chinese with English abstract) |
[45] |
Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ (2007). Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia, 152,26-36.
DOI URL PMID |
[46] | Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B, Vorosmarty CJ (1991). Potential net primary productivity in south America: application of a global model. Ecological Applications, 1,399-429. |
[47] | Rozanski K, Araguds-Araguds L, Gonfantini R (1993). Isotopic patterns in modern global precipitation. In: Swart PK, Lohman KC, McKenzie J, Savin S eds. Climate Change in Continental Isotopic Records—Geophysical Monograph. 78,1-36. |
[48] | Schachtschneider K, February EC (2010). The relationship between fog, floods, groundwater and tree growth along the lower Kuiseb River in the hyperarid Namib. Journal of Arid Environments, 74,1632-1637. |
[49] |
Schulze ED, Mooney HA, Sala OE, Jobbagy E, Buchmann N, Bauer G, Canadell J, Jackson RB, Loreti J, Osterheld M, Ehleringer JR (1996). Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108,503-511.
DOI URL PMID |
[50] | Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: effects on soil water and plant water uptake. Journal of Arid Environment, 60,547-566. |
[51] | Su B (苏波), Han XG (韩兴国), Li LH (李凌浩), Bai YF (白永飞), Huang JH (黄建辉), Qu CM (渠春梅) (2000). Responses of δ 13C value and water use efficiency of plant species to environmental gradients along the grassland zone Northeast China Transect . Acta Phytoecologica Sinica (植物生态学报), 24,648-655. (in Chinese with English abstract) |
[52] |
Treichel S, Brinckmann E, Scheitler B,von Willert DJ (1984). Occurrence and changes of proline content in plants in southern Namib Desert in relations to increasing and decreasing drought. Planta, 162,236-242.
URL PMID |
[53] | Wang BF (王葆芳), Yang XH (杨晓辉), Jiang ZP (江泽平) (2004). Utilization of water resources and soil salinization control in the Dengkou irrigated area, Inner Mongolia. Arid Zone Research (干旱区研究), 21,139-143. (in Chinese with English abstract) |
[54] | Wang JH (王继和), Jin HJ (靳虎甲), Ma QL (马全林), Zhang DK (张德魁), Liu YJ (刘有军), Xu BY (胥宝一) (2010). Structure and distribution pattern of Artermisia ordosica population in arid region . Journal of Desert Research (中国沙漠), 30,534-539. (in Chinese with English abstract) |
[55] | White JWC, Cook ER, Lawrence JR, Broecker WS (1985). The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochimica et Cosmochimica Acta, 49,237-246. |
[56] | Williams DG, Ehleringer JR (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70,517-537. |
[57] | Xiao CW (肖春旺), Zhou GS (周广胜), Ma FY (马风云) (2002). Effect of water supply change on morphology and growth of dominant plants in Maowusu sandland. Acta Phytoecological Sinica (植物生态学报), 26,69-76. (in Chinese with English abstract) |
[58] |
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982). Living with water stress: evolution of osmolyte systems. Science, 217,1214-1222.
DOI URL PMID |
[59] | Yang H, Auerswald K, Bai YF, Han XG (2010). Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China. Plant and Soil, 340,303-313. |
[60] |
Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant & Cell Physiology, 38,1095-1102.
DOI URL PMID |
[61] | Zhao CM (赵长明), Wei XP (魏小平), Yu QS (尉秋实), Deng JM (邓建明), Cheng DL (程栋梁), Wang GX (王根轩) (2005). Photosynthetic characteristics of Nitraria tangu- torum and Haloxylon ammodendron in the ecotone between oasis and desert in Minqin, Region, Country . Acta Ecologica Sinica (生态学报), 25,1908-1913. (in Chinese with English abstract) |
[62] | Zheng SX (郑淑霞), Shangguan ZP (上官周平) (2005). Variation in the δ13C value of typical plants in Loess plateau over the last 70 years. Acta Phytoecologica Sinica (植物生态学报), 29,289-295. (in Chinese with English abstract) |
[63] | Zhu YJ (朱雅娟), Jia ZQ (贾志清), Lu Q (卢琦), Hao YG (郝玉光), Zhang JB (张景波), Li L (李磊), Qi YL (綦艳林) (2010). Water use strategy of five shrubs in Ulanbuh desert. Scientia Silvae Sinicae (林业科学), 46,16-21. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[6] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[7] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[8] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[9] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[10] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[11] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[12] | 张治国, 魏海霞. 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化[J]. 植物生态学报, 2019, 43(11): 979-987. |
[13] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[14] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[15] | 庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5859
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 5622
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La