植物生态学报 ›› 2005, Vol. 29 ›› Issue (4): 569-576.DOI: 10.17521/cjpe.2005.0076
马秀枝1, 王艳芬2,*(), 汪诗平1, 王金枝1, 李长生3
收稿日期:
2004-05-17
接受日期:
2004-08-27
出版日期:
2005-05-17
发布日期:
2005-07-31
通讯作者:
王艳芬
基金资助:
MA Xiu-Zhi1, WANG Yan-Fen2,*(), WANG Shi-Ping1, WANG Jin-Zhi1, LI Chang-Sheng3
Received:
2004-05-17
Accepted:
2004-08-27
Online:
2005-05-17
Published:
2005-07-31
Contact:
WANG Yan-Fen
About author:
* E-mail: yfwang@gscas.ac.cn摘要:
选择内蒙古锡林河流域三种草原,较系统地研究了放牧对微生物量碳(MB-C)和易分解碳(Lab-C)两种碳素组分的影响。结果表明,自由放牧22年后,羊草(Leymus chinensis)草原土壤0~10 cm和10~20 cm土层土壤微生物量碳分别下降了27.9%和12.8%;土壤易分解碳分别下降了22.0%和12.6%,自由放牧没有改变羊草草原土壤活性碳的季节变化形式。大针茅(Stipa grandis)草原0~5 cm表层和5~15 cm下层土壤微生物量碳分别下降了38.2%和12.2%。大针茅草原季节波动出现高峰的时间较羊草草原推后,基本在8月下旬,并且与地上生物量存在明显的正相关关系(p<0.001)。土壤活性碳在表征羊草草原和大针茅草原土壤的动态变化时,要敏感于土壤总有机碳。冷蒿-小禾草草原(Artemisia frigida-short bunchgrasses steppe)连续放牧11年恢复2年后,土壤各碳素组分都没有发生明显变化,但随着放牧率的增加,MB-C/Org-C比值和Lab-C/Org-C比值逐渐降低,表现为轻牧>中牧>重牧,这说明,在表征放牧对冷蒿-小禾草草原土壤的影响指示上,MB-C/Org-C和Lab-C/Org-C要比MB-C和Lab-C敏感。
马秀枝, 王艳芬, 汪诗平, 王金枝, 李长生. 放牧对内蒙古锡林河流域草原土壤碳组分的影响. 植物生态学报, 2005, 29(4): 569-576. DOI: 10.17521/cjpe.2005.0076
MA Xiu-Zhi, WANG Yan-Fen, WANG Shi-Ping, WANG Jin-Zhi, LI Chang-Sheng. IMPACTS OF GRAZING ON SOIL CARBON FRACTIONS IN THE GRASSLANDS OF XILIN RIVER BASIN, INNER MONGOLIA. Chinese Journal of Plant Ecology, 2005, 29(4): 569-576. DOI: 10.17521/cjpe.2005.0076
土层 Soil layer | 羊草草原 Leymus chinensis grassaland | 大针茅草原 Stipa grandis grassland | 冷蒿-小禾草草原 Artemisia frigida-short bunchgrass steppe | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
围封 Enclosure | 自由放牧 Grazing | 围封 Enclosure | 自由放牧 Grazing | 轻牧 LG | 中牧 MG | 重牧 HG | ||||||||||
表层 Top layer (g·kg-1) | 390.4±59.9 | 281.4±54.6 | 496.2±70.7 | 306.5±54.2 | 356.3±30.4 | 347.7±18.7 | 355.4±34.9 | |||||||||
下层 Sub layer (g·kg-1) | 230.9±37.4 | 201.3±40.4 | 321.9±64.8 | 282.7±13.8 | 209.4±28.4 | 161.5±21.5 | 191.1±26.8 | |||||||||
(T-S)/T(%) | 0.8 | 28.4 | 35.1 | 7.8 | 41.2 | 53.5 | 46.2 |
表1 不同类型草原土壤微生物量碳含量(mg·kg-1)及其剖面分布
Table 1 Impacts of grazing on soil microbial carbon and its vertical distribution
土层 Soil layer | 羊草草原 Leymus chinensis grassaland | 大针茅草原 Stipa grandis grassland | 冷蒿-小禾草草原 Artemisia frigida-short bunchgrass steppe | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
围封 Enclosure | 自由放牧 Grazing | 围封 Enclosure | 自由放牧 Grazing | 轻牧 LG | 中牧 MG | 重牧 HG | ||||||||||
表层 Top layer (g·kg-1) | 390.4±59.9 | 281.4±54.6 | 496.2±70.7 | 306.5±54.2 | 356.3±30.4 | 347.7±18.7 | 355.4±34.9 | |||||||||
下层 Sub layer (g·kg-1) | 230.9±37.4 | 201.3±40.4 | 321.9±64.8 | 282.7±13.8 | 209.4±28.4 | 161.5±21.5 | 191.1±26.8 | |||||||||
(T-S)/T(%) | 0.8 | 28.4 | 35.1 | 7.8 | 41.2 | 53.5 | 46.2 |
图1 自由放牧对羊草草原土壤微生物量碳的影响 字母不同者为差异显著
Fig.1 Impacts of grazing on soil microbial carbon in the Leymus chinensis grassland of Xilin River basin Significant difference with different letters (p<0.05)
图2 自由放牧对大针茅草原0~5 cm土壤微生物量碳的影响 字母不同者为差异显著
Fig.2 Impacts of grazing on soil microbial biomass in the Stipa grandis grassland of Xilin River basin Significant difference with different letters (p<0.05)
图3 自由放牧对羊草草原土壤易氧化碳的影响 字母不同者为差异显著
Fig.3 Impacts of grazing on soil labile carbon in the Leymus chinensis grassland of Xilin River basin Significant difference with different letters (p<0.05)
土层 Soil layer | 羊草草原 Leymus chinensis grassalnd | 冷蒿-小禾草草原 Artemisia frigida-short bunchgrasses steppe | |||
---|---|---|---|---|---|
围封 Enclosure | 自由放牧 Grazing | 轻牧 LG | 中牧 MG | 重牧 HG | |
表层 Top layer 0~10 cm | 4.49±0.29 | 3.50±0.62 | 2.93±0.66 | 2.65±0.13 | 2.71±0.08 |
下层 Sub layer 10~20 cm | 2.61±0.57 | 2.28±0.52 | 1.46±1.26 | 1.21±0.37 | 1.12±0.25 |
(T-S)/T(%) | 41.8 | 34.9 | 50.2 | 54.3 | 58.7 |
表2 不同类型草原土壤易分解碳含量(g·kg-1)及其剖面分布
Table 2 Impacts of grazing on soil labile carbon and its vertical distribution
土层 Soil layer | 羊草草原 Leymus chinensis grassalnd | 冷蒿-小禾草草原 Artemisia frigida-short bunchgrasses steppe | |||
---|---|---|---|---|---|
围封 Enclosure | 自由放牧 Grazing | 轻牧 LG | 中牧 MG | 重牧 HG | |
表层 Top layer 0~10 cm | 4.49±0.29 | 3.50±0.62 | 2.93±0.66 | 2.65±0.13 | 2.71±0.08 |
下层 Sub layer 10~20 cm | 2.61±0.57 | 2.28±0.52 | 1.46±1.26 | 1.21±0.37 | 1.12±0.25 |
(T-S)/T(%) | 41.8 | 34.9 | 50.2 | 54.3 | 58.7 |
[1] | Blair BJ, Lefroy RD (1995). Soil carbon fractions based on their degree of oxidation, and the developments of a carbon management index for agriculture systems. Australian Journal of Agriculture Research, 46,1456-1466. |
[2] | Bauer JD, Armand CV, Black AL (1987). Soil property comparisons in virgin grasslands between grazed land non-grazed management systems. Soil Science Society of America Journal, 51,176-182. |
[3] | Biederbeck BO, Zentner RP (1994). Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Boilogy and Biochemistry, 26,1647-1656. |
[4] | Cui XY, Wang YF, Niu HS, Wang SP, Schnag E, Rogasik J, Flecenstein J, Tang YH (2005). Effect of long-term grazing on soil organic carbon content in semiarid steppe in Inner Mongolia. Ecological Research, 20, DOI: 10.1007/S11284-005-0063-8. |
[5] | Derner JD, Beriske DD, Boutton TW (1997). Dose grazing mediate soil carbon and accumulation beneath C4,perennial grasses along an environmental gradient? Journal of Range Management, 24,308-309. |
[6] | Elzein A, Balesdent J (1995). A mechanistic simulation of the vertical distribution of carbon concentrations and residence time in soil. Soil Science Society of America Journal, 59,1328-1335. |
[7] | Frank AB, Tanaka DL, Hofmann L, Follett RF (1995). Soil carbon and nitrogen of Northern Great Plains grasslands as influenced by long-term grazing. Journal of Range Management, 48,470-474. |
[8] | Graetz D (1994). Grasslands. In: Meyer BL, Turner WB eds. Changes in Land-Use and Land-Cover: a Global Perspective. Cambridge University Press, Cambridge UK, 125. |
[9] | Holt JA (1997). Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Journal of Applied Soil Ecology, 5,143-149. |
[10] | Houghton RA(1995). Changes in the storage of terrestrial carbon since 1850.In:Lai R ed. Soils and Global Change. CRC Press, Inc, Roca Raton,Florida,45-65. |
[11] | IPCC (2001). The Third Evaluation Report:Climate Change, Synthesis Report. Cambridge University Press, Cambridge.8-10. |
[12] | Jenkinson DS, Powlson DS (1976). The effects of biocidal treatments on metabolism in soil — a method for measuring soil biomass. Soil Biology and Biochemistry, 8,189-202. |
[13] | Jenkinson DS, Odes JM (1979). A method for measuring adenosine in soil. Soil Biology and Biochemistry, 11,193-199. |
[14] | Keeling CD (1997). Climate change and carbon dioxide. An introduction National Academy of Science, 94,8273-8274. |
[15] | Li XZ(李香真), Chen ZZ(陈佐忠) (1998). Impacts of plant and soil C,N,P contents on different stocking rate. Acta Agrestia Sinica (草地学报), 16,90-98. (in Chinese with English abstract) |
[16] | Li LH(李凌浩) (1998). Effects of land-use change on soil carbon storage in grassland ecosystems. Acta Phytoecologica Sinica (植物生态学报), 22,300-302. (in Chinese with English abstract) |
[17] | Lin QM(林启美), Wu YG(吴玉光) (1999). Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology (生态学杂志), 18(2),63-66. (in Chinese with English abstract) |
[18] | Lefory RDB, Blair GJ, Strong WM (1993). Changes in soil organic matter with cropping as measured by organic carbon and 13C natural isotope abundance. Plant and Soil,155-156,399-402. |
[19] | Mazzarino MJ, Szott L, Jimenez M (1993). Dynamics of soil total C and N, microbial biomass,and water-soluble C in tropical agroecosystems. Soil Biology and Biochemistry, 25,205-214. |
[20] | Marumoto TJ, Domsch KH (1982). Mineration of nutrients from soil microbial biomass. Soil Biology and Biochemistry, 14,469-475. |
[21] | Moondy HA, Vitousek PM, Matson PA (1987). Exchange of material between terrestrial ecosystem and the atmosphere. Science, 238,926-932. |
[22] | Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soil over a global range of environments. Ecological Monographs, 63,327-366. |
[23] | Sampson RN, Apps M, Brown S (1993). Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2. Water Air and Soil Pollution, 70,3-15. |
[24] | Sparling GP, West AW (1989). Importance of soil water content when estimating soil microbial C、N and P by the fumigation-extraction methods. Soil Biology & Biochemistry, 21,245-253. |
[25] | Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications, 9,65-71. |
[26] | Wang YF(王艳芬), Chen ZZ(陈佐忠), Tieszen LT (1998). Distribution of soil organic carbon in the major grasslands of Xilingole,Inner Mongolia, China. Acta Phytoecologica Sinica (植物生态学报), 22,545-551. (in Chinese with English abstract) |
[27] | Wang SP(王淑平), Zhou GS(周广胜), Gao SH(高素华), Guo JP(郭建平) (2003). Distribution of soil labile carbon along the Northeast transect (NECT) and its response to climate change. Acta Phytoecologica Sinica (植物生态学报), 27,780-785. (in Chinese with English abstract) |
[28] | Watson RT, Verardo DJ (2000). Land-Use Change and Forestry. Cambridge University Press, Cambridge. |
[29] | Weinhold BJ, Henndrickson JR, Karn JF (2001). Pasture management influences on soil properties in the Northern Grain plains. Journal of Soil and Water Conservation, 56,27-31. |
[30] | Wolters V, Joergensen RG (1993). Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biology and Biochemistry, 25,25-31. |
[31] | XU YC(徐阳春), Shen QR(沈其荣) (2002). Impacts on soil microbial C, N,P under long-term no-till and organic manure spreading. Acta Pedologica Sinica (土壤学报), 39,89-95. (in Chinese with English abstract) |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[8] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[9] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[10] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[11] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[12] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[13] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[14] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[15] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19