植物生态学报 ›› 2024, Vol. 48 ›› Issue (7): 844-857.DOI: 10.17521/cjpe.2022.0489 cstr: 32100.14.cjpe.2022.0489
王晓颖1,2,5, 孙志高1,2,3,*(), 陈冰冰1,4, 武慧慧1,2, 张党玉1,2
收稿日期:
2022-12-05
接受日期:
2023-08-03
出版日期:
2024-07-20
发布日期:
2023-08-31
通讯作者:
* 孙志高(基金资助:
WANG Xiao-Ying1,2,5, SUN Zhi-Gao1,2,3,*(), CHEN Bing-Bing1,4, WU Hui-Hui1,2, ZHANG Dang-Yu1,2
Received:
2022-12-05
Accepted:
2023-08-03
Online:
2024-07-20
Published:
2023-08-31
Contact:
* SUN Zhi-Gao(Supported by:
摘要:
潮汐涨落导致的植物残体异位分解是河口湿地最常见的分解方式, 研究分解环境变化下残体的分解及其养分释放对深入了解河口湿地养分循环具有重要意义。为此, 2021年3-12月, 在闽江河口互花米草(Spartina alterniflora)分布区, 以自然环境梯度作为分解环境变化研究的替代系统, 由陆向海方向布设入侵7年的互花米草湿地(M7, 残体记为L7)、新近入侵1年的互花米草湿地(M1, 残体记为L1)以及入侵前的光滩(BF) 3个分解样地, 采用分解袋法模拟研究了分解环境变化对不同入侵年限互花米草残体(L7和L1)分解及磷养分释放的影响。结果表明, 分解环境变化可对残体分解速率产生显著影响。L7在M1和BF环境中的分解相比其在原来环境中(M7)更快, 而L1在M7和BF环境中的分解相比其在原来环境中(M1)更慢。分解环境变化导致的L7或L1分解速率的改变一方面取决于分解环境中关键环境因子(温度和pH)的变化, 另一方面与分解环境变化导致的残体质量(碳氮比和氮磷比)发生改变有关。相较于原分解环境, 分解环境的变化导致L7的总磷(TP)含量整体增加, 而L1的TP含量降低, 但二者TP含量均在M1分解环境中最高。残留率是影响不同分解环境下残体TP含量变化的共性因素, 而分解环境变化引起的主要环境因子(电导率)和残体质量改变是导致TP含量存在差异的重要原因。不同分解环境下L7和L1的磷养分在分解期间均表现为不同程度的净释放。研究发现, L7和L1的分解速率及磷养分释放量均在M1分解环境中较高, 说明残体在该分解环境中的磷养分归还速率可能更快, 而这有利于提高对新近入侵互花米草的磷养分的供给能力。
王晓颖, 孙志高, 陈冰冰, 武慧慧, 张党玉. 闽江河口互花米草残体异位分解及磷养分释放特征. 植物生态学报, 2024, 48(7): 844-857. DOI: 10.17521/cjpe.2022.0489
WANG Xiao-Ying, SUN Zhi-Gao, CHEN Bing-Bing, WU Hui-Hui, ZHANG Dang-Yu. Ex situ decomposition and phosphorus release characteristics of Spartina alterniflora litter in Minjiang estuary. Chinese Journal of Plant Ecology, 2024, 48(7): 844-857. DOI: 10.17521/cjpe.2022.0489
残体类型 Litter type | 总碳(C)含量 Total carbon (C) concentration (mg·g-1) | 总氮(N)含量 Total nitrogen (N) concentration (mg·g-1) | 总磷(P)含量 Total phosphorus (P) concentration (mg·g-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
L7 | 41.59 ± 0.22a | 3.83 ± 0.24b | 0.59 ± 0.01b | 109.03 ± 7.31a | 709.46 ± 5.57a | 6.53 ± 0.44b |
L1 | 38.75 ± 0.02b | 11.05 ± 0.12a | 1.11 ± 0.01a | 35.08 ± 0.38b | 349.58 ± 1.59b | 9.97 ± 0.09a |
表1 闽江河口互花米草两种残体的初始质量(平均值±标准差)
Table 1 Initial quality of the two litter of Spartina alterniflora in Minjiang estuary (mean ± SD)
残体类型 Litter type | 总碳(C)含量 Total carbon (C) concentration (mg·g-1) | 总氮(N)含量 Total nitrogen (N) concentration (mg·g-1) | 总磷(P)含量 Total phosphorus (P) concentration (mg·g-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
L7 | 41.59 ± 0.22a | 3.83 ± 0.24b | 0.59 ± 0.01b | 109.03 ± 7.31a | 709.46 ± 5.57a | 6.53 ± 0.44b |
L1 | 38.75 ± 0.02b | 11.05 ± 0.12a | 1.11 ± 0.01a | 35.08 ± 0.38b | 349.58 ± 1.59b | 9.97 ± 0.09a |
图1 分解期间闽江河口不同分解环境表层土壤的环境因子变化(平均值±标准差)。BF, 入侵前的光滩(n = 30); M1, 入侵1年的互花米草湿地(n = 27); M7, 入侵7年的互花米草湿地(n = 30)。不同小写字母表示不同分解环境下差异显著(p < 0.05)。
Fig. 1 Variations of environmental factors in topsoil in different decomposition environments in Minjiang estuary during decomposition (mean ± SD). BF, bare flat (n = 30); M1, Spartina alterniflora marsh after seaward invasion for one years (n = 27); M7, S. alterniflora marsh after seaward invasion for seven years (n = 30). Different lowercase letters indicated significant difference among decomposition environments at 0.05 level.
图2 闽江河口不同分解环境下互花米草残体残留率变化(平均值±标准差)。BF, 入侵前的光滩; L1, 入侵1年的互花米草残体; L7, 入侵7年的互花米草残体; M1, 入侵1年的互花米草湿地; M7, 入侵7年的互花米草湿地。不同大写字母表示相同残体在不同分解环境间差异显著(p < 0.05); 不同小写字母表示相同分解环境不同残体间差异显著(p < 0.05)。
Fig. 2 Variations of dry mass remaining of litter of Spartina alterniflora in different decomposition environments in Minjiang estuary (mean ± SD). BF, bare flat; L1, litter of S. alterniflora after seaward invasion for one year; L7, litter of S. alterniflora after seaward invasion for seven years; M1, S. alterniflora marsh after seaward invasion for one years; M7, S. alterniflora marsh after seaward invasion for seven years. Different uppercase letters indicated significant difference for the same litter among different decomposition environments (p < 0.05); different lowercase letters indicated significant difference among litter in same decomposition environment (p < 0.05).
残体类型 Litter type | 分解环境 Decomposition environment | 回归方程 Regression equation | 分解速率 Decomposition rate (d-1) | R2 | p | t0.95 (a) |
---|---|---|---|---|---|---|
L7 | M7 | y = -0.00673t + 0.09225 | 0.006 73 | 0.963 05 | <0.01 | 1.26 |
M1 | y = -0.00868t + 0.01048 | 0.008 68 | 0.989 24 | <0.01 | 0.95 | |
BF | y = -0.00693t - 0.00377 | 0.006 93 | 0.967 82 | <0.01 | 1.18 | |
L1 | M7 | y = -0.01065t + 0.04498 | 0.010 65 | 0.982 85 | <0.01 | 0.78 |
M1 | y = -0.01711t + 0.03173 | 0.017 11 | 0.931 51 | <0.01 | 0.48 | |
BF | y = -0.00628t - 0.12914 | 0.006 28 | 0.933 01 | <0.01 | 1.25 |
表2 闽江河口不同分解环境下互花米草残体残留率自然对数(y)与分解时间(t)的回归方程及其相应参数
Table 2 Linear equations and parameters between the natural logarithm (y) of remaining mass of Spartina alterniflora and decomposition days (t) in different decomposition environments in Minjiang estuary
残体类型 Litter type | 分解环境 Decomposition environment | 回归方程 Regression equation | 分解速率 Decomposition rate (d-1) | R2 | p | t0.95 (a) |
---|---|---|---|---|---|---|
L7 | M7 | y = -0.00673t + 0.09225 | 0.006 73 | 0.963 05 | <0.01 | 1.26 |
M1 | y = -0.00868t + 0.01048 | 0.008 68 | 0.989 24 | <0.01 | 0.95 | |
BF | y = -0.00693t - 0.00377 | 0.006 93 | 0.967 82 | <0.01 | 1.18 | |
L1 | M7 | y = -0.01065t + 0.04498 | 0.010 65 | 0.982 85 | <0.01 | 0.78 |
M1 | y = -0.01711t + 0.03173 | 0.017 11 | 0.931 51 | <0.01 | 0.48 | |
BF | y = -0.00628t - 0.12914 | 0.006 28 | 0.933 01 | <0.01 | 1.25 |
残体类型 Litter type | 变异来源 Source of variation | 残留率 Percent of dry mass remaining | 总磷(P)含量 Total phosphorus (P) concentration | 磷累积指数 PAI | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
L7 | 分解时间 Decomposition time | 355.334 | <0.001 | 6.259 | 0.006 | 87.581 | <0.001 | 22.134 | <0.001 | 3.929 | 0.032 | 4.948 | 0.025 |
分解环境 Decomposition environment | 28.434 | 0.001 | 0.775 | 0.502 | 8.270 | 0.019 | 3.500 | 0.098 | 0.060 | 0.942 | 0.603 | 0.577 | |
分解时间×分解环境 Decomposition time × decomposition environment | 4.653 | 0.007 | 2.075 | 0.117 | 3.120 | 0.023 | 1.464 | 0.250 | 2.526 | 0.070 | 3.152 | 0.052 | |
L1 | 分解时间 Decomposition time | 363.536 | <0.001 | 5.102 | 0.044 | 56.996 | <0.001 | 14.213 | <0.001 | 5.034 | 0.024 | 5.516 | 0.042 |
分解环境 Decomposition environment | 99.164 | <0.001 | 14.121 | 0.005 | 0.848 | 0.474 | 84.374 | <0.001 | 30.333 | 0.001 | 1.994 | 0.217 | |
分解时间×分解环境 Decomposition time × decomposition environment | 3.295 | 0.041 | 2.532 | 0.130 | 3.034 | 0.111 | 6.656 | 0.001 | 3.301 | 0.045 | 1.464 | 0.295 |
表3 闽江河口两种互花米草残体主要指标的重复测量方差分析
Table 3 Repeated measurements analysis of variance for the key parameters of the two litter of Spartina alterniflora in Minjiang estuary
残体类型 Litter type | 变异来源 Source of variation | 残留率 Percent of dry mass remaining | 总磷(P)含量 Total phosphorus (P) concentration | 磷累积指数 PAI | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
L7 | 分解时间 Decomposition time | 355.334 | <0.001 | 6.259 | 0.006 | 87.581 | <0.001 | 22.134 | <0.001 | 3.929 | 0.032 | 4.948 | 0.025 |
分解环境 Decomposition environment | 28.434 | 0.001 | 0.775 | 0.502 | 8.270 | 0.019 | 3.500 | 0.098 | 0.060 | 0.942 | 0.603 | 0.577 | |
分解时间×分解环境 Decomposition time × decomposition environment | 4.653 | 0.007 | 2.075 | 0.117 | 3.120 | 0.023 | 1.464 | 0.250 | 2.526 | 0.070 | 3.152 | 0.052 | |
L1 | 分解时间 Decomposition time | 363.536 | <0.001 | 5.102 | 0.044 | 56.996 | <0.001 | 14.213 | <0.001 | 5.034 | 0.024 | 5.516 | 0.042 |
分解环境 Decomposition environment | 99.164 | <0.001 | 14.121 | 0.005 | 0.848 | 0.474 | 84.374 | <0.001 | 30.333 | 0.001 | 1.994 | 0.217 | |
分解时间×分解环境 Decomposition time × decomposition environment | 3.295 | 0.041 | 2.532 | 0.130 | 3.034 | 0.111 | 6.656 | 0.001 | 3.301 | 0.045 | 1.464 | 0.295 |
图3 闽江河口不同分解环境下互花米草残体总磷(TP)含量变化(平均值±标准差)。BF, 入侵前的光滩; L1, 入侵1年的互花米草残体; L7, 入侵7年的互花米草残体; M1, 入侵1年的互花米草湿地; M7, 入侵7年的互花米草湿地。不同大写字母表示相同残体在不同分解环境间差异显著(p < 0.05); 不同小写字母表示相同分解环境不同残体间差异显著(p < 0.05)。
Fig. 3 Variations of total phosphorus (TP) concentration in litter of Spartina alterniflora in different decomposition environments in Minjiang estuary (mean ± SD). BF, bare flat; L1, litter of S. alterniflora after seaward invasion for one year; L7, litter of S. alterniflora after seaward invasion for seven years; M1, S. alterniflora marsh after seaward invasion for one years; M7, S. alterniflora marsh after seaward invasion for seven years. Different uppercase letters indicated significant difference for the same litter among different decomposition environments (p < 0.05); different lowercase letters indicated significant difference among litter in same decomposition environment (p < 0.05).
图4 闽江河口不同分解环境下互花米草残体C:N、C:P和N:P变化(平均值±标准差); C, 碳; N, 氮; P, 磷; BF, 入侵前的光滩; L1, 入侵1年的互花米草残体; L7, 入侵7年的互花米草残体; M1, 入侵1年的互花米草湿地; M7, 入侵7年的互花米草湿地。不同大写字母表示相同残体在不同分解环境间差异显著(p < 0.05); 不同小写字母表示相同分解环境不同残体间差异显著(p < 0.05)。
Fig. 4 Variations of C:N, C:P and N:P ratios in litter of Spartina alterniflora in different decomposition environments in Minjiang estuary (mean ± SD); C, carbon; N, nitrogen; P, phosphorus. BF, bare flat; L1, litter of S. alterniflora after seaward invasion for one year; L7, litter of S. alterniflora after seaward invasion for seven years; M1, S. alterniflora marsh after seaward invasion for one years; M7, S. alterniflora marsh after seaward invasion for seven years. Different uppercase letters indicated significant difference for the same litter among different decomposition environments (p < 0.05); different lowercase letters indicated significant difference among litter in same decomposition environment (p < 0.05).
图5 闽江河口不同分解环境下互花米草残体磷累积指数(PAI)变化(平均值±标准差); BF, 入侵前的光滩; L1, 入侵1年的互花米草残体; L7, 入侵7年的互花米草残体; M1, 入侵1年的互花米草湿地; M7, 入侵7年的互花米草湿地。不同大写字母表示相同残体在不同分解环境间差异显著(p < 0.05); 不同小写字母表示相同分解环境不同残体间差异显著(p < 0.05)。
Fig. 5 Variations of accumulation indices for phosphorus (PAI) in litter of Spartina alterniflora in different decomposition environments in Minjiang estuary (mean ± SD). BF, bare flat; L1, litter of S. alterniflora after seaward invasion for one year; L7, litter of S. alterniflora after seaward invasion for seven years; M1, S. alterniflora marsh after seaward invasion for one years; M7, S. alterniflora marsh after seaward invasion for seven years. Different uppercase letters indicated significant difference for the same litter among different decomposition environments (p < 0.05); different lowercase letters indicated significant difference among litter in same decomposition environment (p < 0.05).
残体类型 Litter type | 分解环境 Decomposition environment | 参数 Parameter | 残留率 Mass remaining | 含水量 Moisture | pH | EC | 温度 Temperature | 地表空气湿度 Surface air humidity | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|---|---|---|
L7 | M7 (n = 30) | Mr | 1 | -0.296 | 0.802** | -0.069 | -0.192 | 0.346 | 0.884** | -0.022 | -0.864** |
TP | 0.135 | -0.132 | 0.125 | 0.231 | -0.602** | -0.006 | 0.041 | -0.959** | -0.517** | ||
PAI | 0.897** | -0.272 | 0.706** | 0.307 | -0.312 | 0.374* | 0.756** | -0.407** | -0.920** | ||
M1 (n = 27) | Mr | 1 | -0.349 | 0.371 | -0.121 | -0.756** | 0.054 | 0.734** | 0.331 | -0.085 | |
TP | -0.393 | -0.226 | -0.162 | -0.026 | 0.379 | 0.277 | -0.571* | -0.898** | -0.637** | ||
PAI | 0.736** | -0.549* | 0.218 | -0.191 | -0.495* | 0.229 | 0.376 | -0.332 | -0.602** | ||
BF (n = 30) | Mr | 1 | -0.510** | -0.249 | -0.083 | -0.351 | 0.174 | 0.881** | 0.242 | -0.383* | |
TP | -0.476** | -0.134 | -0.257 | 0.182 | -0.270 | 0.008 | -0.718** | -0.815** | -0.286 | ||
PAI | 0.807** | -0.566** | -0.442** | -0.807 | -0.400** | 0.377** | 0.487** | -0.238 | -0.576** | ||
合计 Total (n = 87) | Mr | 1 | -0.363** | 0.353** | -0.100 | -0.388** | 0.199 | 0.838** | 0.117 | -0.390** | |
TP | -0.250* | -0.202 | -0.001 | 0.144 | -0.238* | 0.057 | -0.459** | -0.796** | -0.484** | ||
PAI | 0.823** | -0.419** | 0.264* | -0.082 | -0.393** | 0.317** | 0.550** | -0.317** | -0.608** | ||
L1 | M7 (n = 30) | Mr | 1 | 0.002 | 0.561** | -0.012 | -0.238 | 0.306 | 0.652** | -0.114 | -0.770** |
TP | 0.328 | -0.270 | -0.064 | -0.024 | -0.066 | 0.614** | -0.360 | -0.909** | -0.703** | ||
PAI | 0.896** | -0.039 | 0.393* | 0.073 | -0.230 | 0.516** | 0.329 | -0.462** | -0.857** | ||
M1 (n = 24) | Mr | 1 | -0.126 | 0.369 | 0.093 | -0.876** | 0.118 | 0.607** | -0.066 | 0.450** | |
TP | 0.266 | 0.522* | 0.126 | -0.061 | -0.288 | 0.332 | 0.316 | -0.804** | -0.796** | ||
PAI | 0.825** | 0.184 | 0.287 | 0.065 | -0.735** | 0.261 | 0.528** | -0.523* | -0.737** | ||
BF (n = 30) | Mr | 1 | -0.295 | 0.123 | 0.093 | -0.334 | 0.140 | -0.171 | -0.326 | -0.514** | |
TP | 0.407* | -0.469** | -0.246 | 0.496** | -0.474** | 0.157 | -0.822** | -0.884** | -0.776** | ||
PAI | 0.857** | -0.445* | -0.106 | 0.292 | -0.407* | 0.241 | -0.498** | -0.615** | -0.697** | ||
合计 Total (n = 84) | Mr | 1 | -0.091 | 0.361** | 0.071 | -0.460** | 0.192 | 0.299** | -0.111 | -0.553** | |
TP | 0.245* | 0.077 | 0.156 | 0.084 | -0.175 | 0.310** | -0.373** | -0.831** | -0.629** | ||
PAI | 0.838** | -0.016 | 0.147 | 0.140 | -0.422** | 0.334** | 0.022 | -0.504** | -0.720** |
表4 闽江河口互花米草不同分解环境下残体残留率(Mr)、总磷(TP)含量和磷累积指数(PAI)与主要因子之间的Pearson相关系数
Table 4 Pearson correlation coefficients between remaining litter mass (Mr), total phosphorus (TP) concentration, accumulation indices for phosphorus (PAI) and key variables in different decomposition environments of Spartina alterniflora in Minjiang estuary
残体类型 Litter type | 分解环境 Decomposition environment | 参数 Parameter | 残留率 Mass remaining | 含水量 Moisture | pH | EC | 温度 Temperature | 地表空气湿度 Surface air humidity | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|---|---|---|
L7 | M7 (n = 30) | Mr | 1 | -0.296 | 0.802** | -0.069 | -0.192 | 0.346 | 0.884** | -0.022 | -0.864** |
TP | 0.135 | -0.132 | 0.125 | 0.231 | -0.602** | -0.006 | 0.041 | -0.959** | -0.517** | ||
PAI | 0.897** | -0.272 | 0.706** | 0.307 | -0.312 | 0.374* | 0.756** | -0.407** | -0.920** | ||
M1 (n = 27) | Mr | 1 | -0.349 | 0.371 | -0.121 | -0.756** | 0.054 | 0.734** | 0.331 | -0.085 | |
TP | -0.393 | -0.226 | -0.162 | -0.026 | 0.379 | 0.277 | -0.571* | -0.898** | -0.637** | ||
PAI | 0.736** | -0.549* | 0.218 | -0.191 | -0.495* | 0.229 | 0.376 | -0.332 | -0.602** | ||
BF (n = 30) | Mr | 1 | -0.510** | -0.249 | -0.083 | -0.351 | 0.174 | 0.881** | 0.242 | -0.383* | |
TP | -0.476** | -0.134 | -0.257 | 0.182 | -0.270 | 0.008 | -0.718** | -0.815** | -0.286 | ||
PAI | 0.807** | -0.566** | -0.442** | -0.807 | -0.400** | 0.377** | 0.487** | -0.238 | -0.576** | ||
合计 Total (n = 87) | Mr | 1 | -0.363** | 0.353** | -0.100 | -0.388** | 0.199 | 0.838** | 0.117 | -0.390** | |
TP | -0.250* | -0.202 | -0.001 | 0.144 | -0.238* | 0.057 | -0.459** | -0.796** | -0.484** | ||
PAI | 0.823** | -0.419** | 0.264* | -0.082 | -0.393** | 0.317** | 0.550** | -0.317** | -0.608** | ||
L1 | M7 (n = 30) | Mr | 1 | 0.002 | 0.561** | -0.012 | -0.238 | 0.306 | 0.652** | -0.114 | -0.770** |
TP | 0.328 | -0.270 | -0.064 | -0.024 | -0.066 | 0.614** | -0.360 | -0.909** | -0.703** | ||
PAI | 0.896** | -0.039 | 0.393* | 0.073 | -0.230 | 0.516** | 0.329 | -0.462** | -0.857** | ||
M1 (n = 24) | Mr | 1 | -0.126 | 0.369 | 0.093 | -0.876** | 0.118 | 0.607** | -0.066 | 0.450** | |
TP | 0.266 | 0.522* | 0.126 | -0.061 | -0.288 | 0.332 | 0.316 | -0.804** | -0.796** | ||
PAI | 0.825** | 0.184 | 0.287 | 0.065 | -0.735** | 0.261 | 0.528** | -0.523* | -0.737** | ||
BF (n = 30) | Mr | 1 | -0.295 | 0.123 | 0.093 | -0.334 | 0.140 | -0.171 | -0.326 | -0.514** | |
TP | 0.407* | -0.469** | -0.246 | 0.496** | -0.474** | 0.157 | -0.822** | -0.884** | -0.776** | ||
PAI | 0.857** | -0.445* | -0.106 | 0.292 | -0.407* | 0.241 | -0.498** | -0.615** | -0.697** | ||
合计 Total (n = 84) | Mr | 1 | -0.091 | 0.361** | 0.071 | -0.460** | 0.192 | 0.299** | -0.111 | -0.553** | |
TP | 0.245* | 0.077 | 0.156 | 0.084 | -0.175 | 0.310** | -0.373** | -0.831** | -0.629** | ||
PAI | 0.838** | -0.016 | 0.147 | 0.140 | -0.422** | 0.334** | 0.022 | -0.504** | -0.720** |
残体类型 Litter type | 参数 Parameter | 线性回归方程 Linear equation | R2 | p |
---|---|---|---|---|
L7 | Mr | y = -38.544 - 0.773x5 + 0.658x6 + 0.679x7 | 0.755 | <0.01 |
TP | y = 0.219 + 0.049x3 - 0.007x5 + 0.003x6 + 0.001x8 + 0.015x9 | 0.820 | <0.01 | |
PAI | y = -57.959 + 0.921x1 - 0.319x5 + 0.479x6 + 0.298x7 - 0.052x8 + 3.411x9 | 0.924 | <0.01 | |
L1 | Mr | y = 234.963 - 1.515x5 - 2.762x7 + 0.189x8 - 10.154x9 | 0.504 | <0.01 |
TP | y = 0.625 + 0.005x2 + 0.005x6 + 0.005x7 - 0.001x8 | 0.785 | <0.01 | |
PAI | y = -18.466 + 0.746x1 + 0.364x2 + 0.425x6 - 0.049x8 | 0.900 | <0.01 |
表5 闽江河口互花米草残体残留率(Mr)、总磷(TP)含量和磷累积指数(PAI)与主要因子的回归方程
Table 5 Regression equations between remaining litter mass (Mr), total phosphorus (TP) concentration, accumulation indices for phosphorus (PAI) and key factors in different decomposition environments of Spartina alterniflora in Minjiang estuary
残体类型 Litter type | 参数 Parameter | 线性回归方程 Linear equation | R2 | p |
---|---|---|---|---|
L7 | Mr | y = -38.544 - 0.773x5 + 0.658x6 + 0.679x7 | 0.755 | <0.01 |
TP | y = 0.219 + 0.049x3 - 0.007x5 + 0.003x6 + 0.001x8 + 0.015x9 | 0.820 | <0.01 | |
PAI | y = -57.959 + 0.921x1 - 0.319x5 + 0.479x6 + 0.298x7 - 0.052x8 + 3.411x9 | 0.924 | <0.01 | |
L1 | Mr | y = 234.963 - 1.515x5 - 2.762x7 + 0.189x8 - 10.154x9 | 0.504 | <0.01 |
TP | y = 0.625 + 0.005x2 + 0.005x6 + 0.005x7 - 0.001x8 | 0.785 | <0.01 | |
PAI | y = -18.466 + 0.746x1 + 0.364x2 + 0.425x6 - 0.049x8 | 0.900 | <0.01 |
[1] | Ayres E, Steltzer H, Berg S, Wall DH (2009). Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. Journal of Ecology, 97, 901-912. |
[2] | Cai XM (2000). Ecosystem Ecology. Science Press, Beijing. 304-305. |
[蔡晓明 (2000). 生态系统生态学. 科学出版社, 北京. 304-305.] | |
[3] | Carrasco-Barea L, Llorens L, Romaní AM, Gispert M, Verdaguer D (2022). Litter decomposition of three halophytes in a Mediterranean salt marsh: relevance of litter quality, microbial activity and microhabitat. Science of the Total Environment, 838, 155743. DOI: 10.1016/j.scitotenv.2022.155743. |
[4] | Chen BB, Sun ZG, Wang J, Hu XY, He T, Wang H (2021). Effects of sedimentation and nitrogen variations on short-term decomposition and nutrient release of Cyperus malaccensis litters in the Minjiang River estuary. Geographical Research, 40, 1165-1179. |
[陈冰冰, 孙志高, 王杰, 胡星云, 何涛, 王华 (2021). 沉积强度及氮养分改变对闽江河口短叶茳芏残体短期分解与养分释放的影响. 地理研究, 40, 1165-1179.]
DOI |
|
[5] | Chen BM, Peng SL, Hou YP, Ren WT (2008). Effects of exotic plant Mikania micrantha H.B.K. on litter decomposition of several native plants. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(6), 44-47. |
[陈宝明, 彭少麟, 侯玉平, 任文韬 (2008). 外来植物薇甘菊对本地植物凋落物分解的影响. 中山大学学报(自然科学版), 47(6), 44-47.] | |
[6] | Chen GX, Chen SY, Wang WQ, Zeng CS (2017). Effects of crab on litters decomposition in Min River estuarine wetlands. Journal of Subtropical Resources and Environment, 12(3), 35-42. |
[陈桂香, 陈淑云, 王维奇, 曾从盛 (2017). 闽江河口湿地螃蟹对枯落物分解的影响. 亚热带资源与环境学报, 12(3), 35-42.] | |
[7] | Cui LJ, Pan X, Li W, Zhang XD, Liu GF, Song YB, Yu FH, Prinzing A, Cornelissen JHC (2019). Phragmites australis meets Suaeda salsa on the “red beach”: effects of an ecosystem engineer on salt-marsh litter decomposition. Science of the Total Environment, 693, 133477. DOI: 10.1016/j.scitotenv.2019.07.283. |
[8] | Dhaou D, Gros R, Baldy V, Adotévi A, Gaboriau M, Estevez Y, Lecareux C, Dupouyet S, Fernandez C, Bousquet-Mélou A (2022). Comparison of leaf litter decomposition and microbial decomposer communities in fringe and riverine mangroves in French Guiana. Regional Environmental Change, 22, 102. DOI: 10.1007/S10113-022-01956-6. |
[9] | Duan H, Wang L, Zhang YN, Fu XH, Tsang Y, Wu JH, Le YQ (2018). Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River Estuary. Geoderma, 319, 230-238. |
[10] | Ferreira V, Chauvet E (2011). Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology, 17, 551-564. |
[11] | Gao SQ, Song YY, Song CC, Wang XW, Ma XY, Gao JL, Cheng XF, Du Y (2022). Effects of temperature increase and nitrogen addition on the early litter decomposition in permafrost peatlands. Catena, 209, 105801. DOI: 10.1016/J.catena.2021.105801. |
[12] | Hartzell JL, Jordan TE, Cornwell JC (2010). Phosphorus burial in sediments along the salinity gradient of the Patuxent River, a subestuary of the Chesapeake Bay (USA). Estuaries and Coasts, 33, 92-106. |
[13] | Hayes MA, Jesse A, Tabet B, Reef R, Keuskamp JA, Lovelock CE (2017). The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant and Soil, 416, 193-204. |
[14] | Hou GY, Zhai SJ, Gao H, Le XQ (2017). Effect of salinity on silicon, carbon, and nitrogen during decomposition of Spartina alterniflora litter. Acta Ecologica Sinica, 37, 184-191. |
[侯贯云, 翟水晶, 高会, 乐晓青 (2017). 盐度对互花米草枯落物分解释放硅、碳、氮元素的影响. 生态学报, 37, 184-191.] | |
[15] | Huo YZ, Wang YH, Wang CP, Wang LX, Ma CC, Guo HY (2021). Effects of Spartina alterniflora invasion on the composition and diversity of culturable soil bacterial and fungal communities in Tianjin coastal wetland. Journal of Tianjin Normal University (Natural Science Edition), 41(1), 34-41. |
[霍玉珠, 王银华, 王春萍, 王丽霞, 马成仓, 郭宏宇 (2021). 互花米草入侵对天津滨海湿地土壤可培养细菌和真菌群落组成及多样性的影响. 天津师范大学学报(自然科学版), 41(1), 34-41.] | |
[16] | Janousek CN, Buffington KJ, Guntenspergen GR, Thorne KM, Dugger BD, Takekawa JY (2017). Inundation, vegetation, and sediment effects on litter decomposition in Pacific coast tidal marshes. Ecosystems, 20, 1296-1310. |
[17] | Kittle DL, McGraw JB, Garbutt K (1995). Plant litter decomposition in wetlands receiving acid mine drainage. Journal of Environmental Quality, 24, 301-306. |
[18] | Laiho R, Laine J, Trettin CC, Finér L (2004). Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biology & Biochemistry, 36, 1095-1109. |
[19] | Lee AA, Bukaveckas PA (2002). Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquatic Botany, 74, 273-285. |
[20] | Liu PP, Wang QG, Bai JH, Gao HF, Huang LB, Xiao R (2010). Decomposition and return of C and N of plant litters of Phragmites australis and Suaeda salsa in typical wetlands of the Yellow River Delta, China. Procedia Environmental Sciences, 2, 1717-1726. |
[21] | Liu XH, Song XJ, Chen H, Ye YZ, Ye ZH (2012). Analysis on chemical properties and fibre morphology of Spartina alterniflora. Journal of Fujian Forestry Science and Technology, 39(4), 9-11. |
[刘晓辉, 宋孝金, 陈涵, 叶友章, 叶忠华 (2012). 互花米草化学性质和纤维形态分析. 福建林业科技, 39(4), 9-11.] | |
[22] | Poi ASG, Galassi ME, Carnevali RP, Gallardo LI (2017). Leaf litter and invertebrate colonization: the role of macroconsumers in a subtropical wetland (Corrientes, Argentina). Wetlands, 37, 135-143. |
[23] | Qin SJ, Liu JS, Zhou WM, Cheng L (2008). Dynamics of initial decomposition of Calamagrostis angustifolia litter in Sanjiang Plain of China. Chinese Journal of Applied Ecology, 19, 1217-1222. |
[秦胜金, 刘景双, 周旺明, 程莉 (2008). 三江平原小叶章湿地枯落物初期分解动态. 应用生态学报, 19, 1217-1222.] | |
[24] | Qin YH, Ma JM, Mei JL, Yang DL, Zhuang FH, Su J (2017). The initial dynamic of litter decomposition of Loropetalum chinense communities amomg different recovery stages in karst area of Lijiang River watershed. Acta Ecologica Sinica, 37, 6792-6799. |
[覃扬浍, 马姜明, 梅军林, 杨栋林, 庄枫红, 苏静 (2017). 漓江流域岩溶区檵木群落不同恢复阶段凋落物分解初期动态. 生态学报, 37, 6792-6799.] | |
[25] | Quintino V, Sangiorgio F, Ricardo F, Mamede R, Pires A, Freitas R, Rodrigues AM, Basset A (2009). In situ experimental study of reed leaf decomposition along a full salinity gradient. Estuarine, Coastal and Shelf Science, 85, 497-506. |
[26] | Rejmánková E, Houdková K (2006). Wetland plant decomposition under different nutrient conditions: What is more important, litter quality or site quality? Biogeochemistry, 80, 245-262. |
[27] | Smith CR, Golladay SW, Atkinson CL, Clayton BA (2022). Litter breakdown among intermittently connected and unconnected geographically isolated wetlands: how nutrient inputs alter wetland function. Wetlands, 42, 57. DOI: 10.1007/S13157-022-01567-1. |
[28] |
Sun XL, Kong FL, Li Y, Di LY, Xi M (2019). Effects of litter decomposition on contents and three-dimensional fluorescence spectroscopy characteristics of soil labile organic carbon in coastal wetlands of Jiaozhou Bay, China. Chinese Journal of Applied Ecology, 30, 563-572.
DOI |
[孙小琳, 孔范龙, 李悦, 狄丽燕, 郗敏 (2019). 胶州湾滨海湿地枯落物分解对土壤活性有机碳含量及其三维荧光特性的影响. 应用生态学报, 30, 563-572.] | |
[29] | Sun ZG, Li JB, He T, Tian LP, Li J, Li X (2019). Bioaccumulation of heavy metals by Cyperus malaccensis and Spartina alterniflora in a typical subtropical estuary (Min River) of Southeast China. Journal of Soils and Sediments, 19, 2061-2075. |
[30] | Sun ZG, Liu JS, Yu JB, Qin SJ (2008). Effects of simulated wetland water change on the decomposition and nitrogen dynamics of Calamagrostis angustifolia litter. Environmental Science, 29, 2081-2093. |
[孙志高, 刘景双, 于君宝, 秦胜金 (2008). 模拟湿地水分变化对小叶章枯落物分解及氮动态的影响. 环境科学, 29, 2081-2093.] | |
[31] | Sun ZG, Mou XJ, Sun WL (2016). Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa and Suaeda glauca litter in newly created marshes of the Yellow River Estuary, China. Ecological Engineering, 93, 175-186. |
[32] | Sun ZG, Mou XJ, Tong C, Wang CY, Xie ZL, Song HL, Sun WG, Lv YC (2015). Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River Estuary, China. Catena, 126, 43-52. |
[33] | Tao BX, Zhang BH, Dong J, Liu CY, Cui Q (2019). Antagonistic effect of nitrogen additions and warming on litter decomposition in the coastal wetland of the Yellow River Delta, China. Ecological Engineering, 131, 1-8. |
[34] | Wang FF, Yan JG, Ma X, Qiu DD, Cui BS (2020). Decomposition characteristics of vegetation litter of Suaeda salsa and Spartina alterniflora in saltmarsh of the Yellow River Estuary, China. Journal of Natural Resources, 35, 480-492. |
[汪方芳, 闫家国, 马旭, 邱冬冬, 崔保山 (2020). 黄河口盐沼湿地盐地碱蓬和互花米草凋落物的分解特征. 自然资源学报, 35, 480-492.]
DOI |
|
[35] | Wang WQ, Wang C, Sardans J, Tong C, Ouyang LM, Asensio D, Gargallo-Garriga A, Peñuelas J (2018). Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland. Aquatic Botany, 149, 5-16. |
[36] | Wang XP, Yang X, Yang N, Xin XJ, Qu YB, Zhao NX, Gao YB (2019). Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community. Acta Ecologica Sinica, 39, 6264-6272. |
[王小平, 杨雪, 杨楠, 辛晓静, 曲耀冰, 赵念席, 高玉葆 (2019). 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响. 生态学报, 39, 6264-6272.] | |
[37] | Xi M, Li MM, Chen T, Li Y, Kong FL (2019). Nutrient dynamics of litter-soil system during litter decomposition in coastal wetlands of Jiaozhou Bay. Chinese Journal of Ecology, 38, 1022-1030. |
[郗敏, 李毛毛, 陈婷, 李悦, 孔范龙 (2019). 胶州湾滨海湿地枯落物分解过程中枯落物-土壤养分动态. 生态学杂志, 38, 1022-1030.] | |
[38] | Xie YJ, Xie YH, Xiao HY, Chen XS, Li F (2017). Controls on litter decomposition of emergent macrophyte in Dongting Lake wetlands. Ecosystems, 20, 1383-1389. |
[39] |
Xu C, Zhao W, Yu XB (2020). Decomposition of wetland plant residue and its influencing factors: a review. Chinese Journal of Ecology, 39, 3865-3872.
DOI |
[许策, 赵玮, 于秀波 (2020). 湿地植物残体分解及其影响因素研究进展. 生态学杂志, 39, 3865-3872.] | |
[40] | Yan JF, Wang L, Hu Y, Tsang YF, Zhang YN, Wu JH, Fu XH, Sun Y (2018). Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 319, 194-203. |
[41] | Yang JS, Liu JS, Yu JB, Wang JD, Li XH, Sun ZG (2006). Decomposition and nutrient dynamics of marsh litter in the Sanjiang Plain China. Acta Ecologica Sinica, 26, 1297-1302. |
[杨继松, 刘景双, 于君宝, 王金达, 李新华, 孙志高 (2006). 三江平原沼泽湿地枯落物分解及其营养动态. 生态学报, 26, 1297-1302.] | |
[42] | Yang XH, Peng LJ, Li SY, Wang SZ (2013). Effect of mangrove leaf litter decomposition on soil dissolved organic matter. Ecology and Environmental Sciences, 22, 924-930. |
[杨秀虹, 彭琳婧, 李适宇, 王诗忠 (2013). 红树植物凋落叶分解对土壤可溶性有机质的影响. 生态环境学报, 22, 924-930.] | |
[43] | Yin MQ, Liu LL, Wu YM, Sheng WY, Ma XY, Du N, Zhu PC, Wang C, Cui ZJ, Brix H, Eller F, Guo WH (2022). Effects of litter species and genetic diversity on plant litter decomposition in coastal wetland. Ecological Indicators, 144, 109439. DOI: 10.1016/J.ECOLIND.2022.109439. |
[44] | Zhang LH, Zeng CS, Zhang WJ, Wang TE, Tong C (2012). Litter decomposition and its main affecting factors in tidal marshes of Minjiang River Estuary, East China. Chinese Journal of Applied Ecology, 23, 2404-2410. |
[张林海, 曾从盛, 张文娟, 王天鹅, 仝川 (2012). 闽江河口湿地枯落物分解及主要影响因子. 应用生态学报, 23, 2404-2410.] | |
[45] | Zhang QJ, Zhang GS, Yu XB, Liu Y, Xia SX, Meng ZJ, Xu C, Hu BH, Wan SX (2020). Dynamic characteristics of the decomposition rate and carbon, nitrogen and phosphorus release of the dominant plants in Poyang Lake Wetland. Acta Ecologica Sinica, 40, 8905-8916. |
[张全军, 张广帅, 于秀波, 刘宇, 夏少霞, 孟竹剑, 许策, 胡斌华, 万松贤 (2020). 鄱阳湖湿地优势植物枯落物的分解速率及碳、氮、磷释放动态特征. 生态学报, 40, 8905-8916.] | |
[46] | Zhao XL, Zhou GS, Zhou L, Lv GH, Jia QY, Xie YB (2007). Soil microbial biomass C in bulrush wetlands of Panjin, northeast China. Journal of Agro-Environment Science, 26(S1), 127-131. |
[赵先丽, 周广胜, 周莉, 吕国红, 贾庆宇, 谢艳兵 (2007). 盘锦芦苇湿地凋落物土壤微生物量碳研究. 农业环境科学学报, 26(S1), 127-131.] | |
[47] | Zhou XP, Wu PF, Li Z, Wu X, Chen YX, Liu KG, Liu DY, Wang YJ, Wang YQ (2020). Temporal-spatial characteristics of secondary production of macrofauna in Minjiang Estuary. Marine Science Bulletin, 39, 342-350. |
[周细平, 吴培芳, 李贞, 吴茜, 陈逸欣, 刘康格, 刘东艳, 王玉珏, 王跃启 (2020). 福建闽江口潮间带大型底栖动物次级生产力时空特征. 海洋通报, 39, 342-350.] |
[1] | 冉佳鑫 张宇辉 王云 杨智杰 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 焦荟颖, 刘立强, 杨佳鑫, 秦伟, 王睿哲. 新疆野苹果自然种群根际固氮菌、解磷菌及解钾菌对叶片养分和生理指标的影响[J]. 植物生态学报, 2024, 48(7): 930-942. |
[3] | 王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954. |
[4] | 俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(6): 690-700. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[8] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[9] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[10] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[11] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[12] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[13] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[14] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[15] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19