植物生态学报 ›› 2024, Vol. 48 ›› Issue (7): 858-871.DOI: 10.17521/cjpe.2023.0358 cstr: 32100.14.cjpe.2023.0358
所属专题: 植物功能性状
秦嘉晨1,2, 王欢2,3, 朱江2,4, 王扬2, 田晨1,2, 白永飞2, 杨培志1,*(), 郑淑霞2,*()()
收稿日期:
2023-12-01
接受日期:
2024-05-10
出版日期:
2024-07-20
发布日期:
2024-05-10
通讯作者:
* (杨培志,基金资助:
QIN Jia-Chen1,2, WANG Huan2,3, ZHU Jiang2,4, WANG Yang2, TIAN Chen1,2, BAI Yong-Fei2, YANG Pei-Zhi1,*(), ZHENG Shu-Xia2,*()()
Received:
2023-12-01
Accepted:
2024-05-10
Online:
2024-07-20
Published:
2024-05-10
Contact:
* (YANG Pei-Zhi,Supported by:
摘要:
放牧是草原生态系统最主要的人为干扰因素, 也是草原群落构建的重要“外部”过滤因子。然而, 关于放牧强度对草原群落构建的作用机制, 尤其是在这一过程中种内性状分化和种间性状差异的相对作用目前的了解还比较有限。为此, 该研究利用在内蒙古典型草原建立的长期放牧控制实验平台, 采用土芯法(环刀)取样, 系统分析了植物群落地上(株丛、叶片)和地下(根系)性状对放牧的响应。通过环刀-小区和小区-样地两个推绎尺度, 研究了基于种内与种间性状变异的放牧强度过滤作用。研究结果表明: (1)随着放牧强度的增加, 大多数地上性状的种内和种间变异呈增加趋势, 而根系性状的种内和种间变异则显著降低。(2)随着放牧强度的增加, 在环刀尺度上, 基于地上性状的种内变异和种间差异的放牧过滤强度先增大后减小, 在中度放牧时达到最大; 然而基于地下性状的种内变异和种间差异的放牧过滤强度逐渐增加。在小区尺度上, 基于地上性状的种内变异和种间差异的放牧过滤强度呈线性降低趋势; 而基于地下性状种内变异的放牧过滤强度增加, 基于种间差异的放牧过滤强度减弱。(3)随着空间尺度增大, 放牧强度对草原群落构建的影响由基于种间性状差异的过滤作用逐渐转变为基于种内性状变异的过滤作用, 此过程受土壤水分和养分的调控。这些研究结果为深入揭示放牧对草原群落构建的调控机制提供了科学依据, 也为正确理解长期放牧导致的植被景观异质性和尺度效应评估提供了重要参考。该研究中叶片和根系性状主要考虑了结构性状, 因此具有一定的局限性, 未来研究可结合叶片和根系碳氮含量等化学性状指标, 以全面理解放牧对植物地上、地下性状变异的调控机制。
秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应. 植物生态学报, 2024, 48(7): 858-871. DOI: 10.17521/cjpe.2023.0358
QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects. Chinese Journal of Plant Ecology, 2024, 48(7): 858-871. DOI: 10.17521/cjpe.2023.0358
图1 放牧强度对内蒙古典型草原环刀尺度上种内(σIC2)与种间(σPC2)性状变异的影响。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。
Fig. 1 Effects of grazing intensity on intraspecific (σIC2) and interspecific (σPC2) trait variation at the auger coring scale in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second, and third order roots; LA, leaf area; PB, plant individual aboveground biomass; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd and SRL-3rd represent the specific root length of the first, second and third order roots.
图2 放牧强度对内蒙古典型草原小区尺度上种内(σIC2)与种间(σPC2)性状变异性的影响。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。
Fig. 2 Effects of grazing intensity on intraspecific (σIC2) and interspecific (σPC2) trait variation at the plot scale in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second and third order roots; LA, leaf area; PB, plant individual aboveground biomass; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd and SRL-3rd represent the specific root length of the first, second and third order roots.
图3 基于内蒙古典型草原环刀尺度种内性状变异的放牧过滤作用(TIC/IR)。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。
Fig. 3 Effect of grazing filtration based on intraspecific trait variation (TIC/IR) at the auger coring scale in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second and third order roots; LA, leaf area; PB, plant individual aboveground biomass; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd and SRL-3rd represent the specific root length of the first, second and third order roots.
图4 基于内蒙古典型草原环刀尺度种间性状差异的放牧过滤作用(TPC/PR)。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。
Fig. 4 Effect of grazing filtration based on interspecific trait variation (TPC/PR) at the auger coring scale in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second and third order roots; LA, leaf area; PB, plant individual aboveground biomass; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd and SRL-3rd represent the specific root length of the first, second and third order roots.
图5 基于内蒙古典型草原小区尺度种内性状变异的放牧过滤作用(TIC/IR)。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。
Fig. 5 Effect of grazing filtration based on intraspecific trait variation (TIC/IR) at the plot scale in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second and third order roots; LA, leaf area; PB, plant individual aboveground biomass; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd and SRL-3rd represent the specific root length of the first, second and third order roots.
图6 基于内蒙古典型草原小区尺度种间性状差异的放牧过滤作用(TPC/PR)。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。
Fig. 6 Effect of grazing filtration based on interspecific trait variation (TPC/PR) at the plot scale in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second and third order roots; LA, leaf area; PB, plant individual aboveground biomass; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd and SRL-3rd represent the specific root length of the first, second and third order roots.
图8 内蒙古典型草原环刀尺度(A)和小区尺度(B)上植物性状TIC/IR、TPC/PR与土壤属性的相关性。ARD-1st、ARD-2nd、ARD-3rd分别表示1、2、3级根系的平均直径; LA, 叶面积; PB, 植株地上生物量; PH, 株高; SLA, 比叶面积; SRL-1st、SRL-2nd、SRL-3rd分别表示1、2、3级根系的比根长。土壤属性: SOC, 土壤有机碳含量; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。TIC/IR, 基于种内性状变异的放牧过滤作用; TPC/PR, 基于种间性状变异的放牧过滤作用。+, p < 0.1; *, p < 0.05; **, p < 0.01.
Fig. 8 Correlations between plant traits (TIC/IR and TPC/PR) and soil properties at the auger coring (A) and plot (B) scales in Nei Mongol typical steppe. ARD-1st, ARD-2nd and ARD-3rd represent the average diameter of the first, second and third order roots. LA, leaf area; PB, aboveground biomass of plants; PH, plant height; SLA, specific leaf area; SRL-1st, SRL-2nd, and SRL-3rd represent the specific root length of the first, second and third order roots. Soil properties: SOC, soil organic carbon content; STN, total soil nitrogen content; STP, total soil phosphorus content; SWC, soil water content. TIC/IR, effect of grazing filtration based on intraspecific trait variation; TPC/PR, effect of grazing filtration based on interspecific trait variation. +, p < 0.1; *, p < 0.05; **, p < 0.01.
[1] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[2] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007). Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034. |
[3] | Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192. |
[4] | Cuchillo-Hilario M, Wrage-Mönnig N, Isselstein J (2018). Forage selectivity by cattle and sheep co-grazing swards differing in plant species diversity. Grass and Forage Science, 73, 320-329. |
[5] | Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, Schweitzer JA, Palkovacs EP (2018). The ecological importance of intraspecific variation. Nature Ecology & Evolution, 2, 57-64. |
[6] | Diamond JM (1975). Assembly of species communities//Cody ML, Diamond JM. Ecology and Evolution of Communities. Harvard University Press, Cambridge, USA. 342-444. |
[7] | Díaz S, Cabido M, Casanoves F (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122. |
[8] | Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341. |
[9] | Díaz S, Noy-Meir I, Cabido M (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology, 38, 497-508. |
[10] | Eldridge DJ, Delgado-Baquerizo M, Travers SK, Val J, Oliver I (2017). Do grazing intensity and herbivore type affect soil health? Insights from a semi-arid productivity gradient. Journal of Applied Ecology, 54, 976-985. |
[11] | Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews, 92, 1156-1173. |
[12] | Grime JP (2006). Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 17, 255-260. |
[13] | Gross N, Börger L, Soriano-Morales SI, Le Bagousse-Pinguet Y, Quero JL, García-Gómez M, Valencia-Gómez E, Maestre FT (2013). Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. Journal of Ecology, 101, 637-649. |
[14] |
Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008). Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456.
DOI PMID |
[15] | Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
[16] | Hoffmann C, Giese M, Dickhoefer U, Wan HW, Bai YF, Steffens M, Liu CY, Butterbach-Bahl K, Han XG (2016). Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: synthesis of a 6-year grazing experiment. Journal of Arid Environments, 135, 50-63. |
[17] | Huang DH, Chen ZZ (1986). Preliminary observation on root distribution depth of 49 species of plants in Xilin Gol sandy grassland, Inner Mongolia. Chinese Journal of Grassland, 8(2), 31-32. |
[黄德华, 陈佐忠 (1986). 内蒙古锡林郭勒沙地草场49种植物根系分布深度的初步观察. 中国草原, 8(2), 31-32.] | |
[18] | Kumar A, Shahbaz M, Koirala M, Blagodatskaya E, Seidel SJ, Kuzyakov Y, Pausch J (2019). Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. Journal of Plant Nutrition and Soil Science, 182, 945-952. |
[19] | Li TL, Huo GW, Wu YN (2022). Comparison of root traits of Stipa krylovii and Allium polyrhizum under grazing in typical steppe. Chinese Journal of Applied Ecology, 33, 360-368. |
[李天良, 霍光伟, 乌云娜 (2022). 放牧影响下典型草原克氏针茅和多根葱根系属性比较. 应用生态学报, 33, 360-368.]
DOI |
|
[20] | Li WH, Xu FW, Zheng SX, Taube F, Bai YF (2017). Patterns and thresholds of grazing-induced changes in community structure and ecosystem functioning: species-level responses and the critical role of species traits. Journal of Applied Ecology, 54, 963-975. |
[21] | Lu XY, Kelsey KC, Yan Y, Sun J, Wang XD, Cheng GW, Neff JC (2017). Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere, 8, e01656. DOI: 10.1002/ecs2.1656. |
[22] | Luo WT, Wu YN, Zhang FJ, Huo GW, Lü JZ (2011). Root characteristics under different grazing intensities in Stipa krylovii steppe. Chinese Journal of Ecology, 30, 2692-2699. |
[雒文涛, 乌云娜, 张凤杰, 霍光伟, 吕建洲 (2011). 不同放牧强度下克氏针茅(Stipa krylovii)草原的根系特征. 生态学杂志, 30, 2692-2699.] | |
[23] |
Maynard DS, Serván CA, Capitán JA, Allesina S (2019). Phenotypic variability promotes diversity and stability in competitive communities. Ecology Letters, 22, 1776-1786.
DOI PMID |
[24] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[25] | Niu K, He J, Lechowicz MJ (2016). Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 53, 1554-1564. |
[26] | Pakeman RJ, Fielding DA (2021). Increased grazing drives homogenisation but reduced grazing increases turnover in upland habitat mosaics. Biodiversity and Conservation, 30, 4279-4295. |
[27] | Shan YM, Chen DM, Guan XX, Zheng SX, Chen HJ, Wang MJ, Bai YF (2011). Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology & Biochemistry, 43, 1943-1954. |
[28] | Shi T, Cao J, Yan RR, Yan YC, Zhang YX, Wang X, Xin XP (2023). Effects of mowing on soil microbial stoichiometry in meadow grassland. Soil and Fertilizer Sciences in China, (3), 127-134. |
[石田, 曹娟, 闫瑞瑞, 闫玉春, 张煜星, 王旭, 辛晓平 (2023). 刈割对草甸草原土壤微生物化学计量特征的影响. 中国土壤与肥料, (3), 127-134.] | |
[29] | Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD (2012). Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data. Journal of Vegetation Science, 23, 942-951. |
[30] |
Stein A, Gerstner K, Kreft H (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
DOI PMID |
[31] | Sun D, Wesche K, Chen D, Zhang S, Wu G, Du G, Comerford NB (2011). Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant, Soil and Environment, 57, 271-278. |
[32] | Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[33] | Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
[34] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[35] | Wan H, Bai Y, Schönbach P, Gierus M, Taube F (2011). Effects of grazing management system on plant community structure and functioning in a semiarid steppe: scaling from species to community. Plant and Soil, 340, 215-226. |
[36] | Wang CN, Li X, Lu XM, Wang Y, Bai YF (2023). Intraspecific trait variation governs grazing-induced shifts in plant community above- and below-ground functional trait composition. Agriculture, Ecosystems & Environment, 346, 108357. DOI: 10.1016/j.agee.2023.108357. |
[37] |
Wang J, Wang D, Li C, Seastedt TR, Liang C, Wang L, Sun W, Liang M, Li Y (2018). Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 28, 201-211.
DOI PMID |
[38] | Weiher E, Paul Clarke GD, Keddy PA (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309-322. |
[39] | Xu B, Zhao HL, Xu H, Liu YX (2000). Twinspan analysis of plant community composition under experimental grazing in a sandy grassland. Acta Phytoecologica Sinica, 24, 252-256. |
[徐斌, 赵哈林, 徐浩, 刘寅虓 (2000). 沙地草场放牧试验植物群落的TWINSPAN数量分析. 植物生态学报, 24, 252-256.] | |
[40] | Zhang B, Hautier Y, Tan X, You C, Cadotte MW, Chu C, Jiang L, Sui X, Ren T, Han X, Chen S (2020). Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 34, 2622-2633. |
[41] | Zhao M, Zhao K, Wang YB, Yin GM, Liu SB, Yan BL, Meng WJ, Lyu SJ, Han GD (2023). Long-term grazing disturbance reduced plant diversity in Stipa breviflora desert steppe. Acta Prataculturae Sinica, 32(9), 39-49. |
[赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋 (2023). 长期放牧干扰降低了短花针茅荒漠草原植物多样性. 草业学报, 32(9), 39-49.]
DOI |
|
[42] | Zheng SX, Chi YG, Yang XJ, Li WH, Lan ZC, Bai YF (2022). Direct and indirect effects of nitrogen enrichment and grazing on grassland productivity through intraspecific trait variability. Journal of Applied Ecology, 59, 598-610. |
[43] | Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340, 141-155. |
[44] | Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB, Bai YF (2010). Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences, 7, 1117-1132. |
[45] | Zhou GY, Zhou XH, Nie YY, Bai SH, Zhou LY, Shao JJ, Cheng WS, Wang JW, Hu FQ, Fu YL (2018). Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials. Plant, Cell & Environment, 41, 2589-2599. |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[4] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[5] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[6] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[10] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[11] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[12] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[13] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[14] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[15] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19