植物生态学报 ›› 2024, Vol. 48 ›› Issue (12): 1612-1622.DOI: 10.17521/cjpe.2023.0293 cstr: 32100.14.cjpe.2023.0293
收稿日期:
2023-10-16
接受日期:
2024-04-08
出版日期:
2024-12-20
发布日期:
2024-12-20
通讯作者:
*张春雨(zcy_0520@163.com)基金资助:
QIANG Ya-Qi, ZHANG Xin-Na, WANG Juan, ZHANG Chun-Yu*()
Received:
2023-10-16
Accepted:
2024-04-08
Online:
2024-12-20
Published:
2024-12-20
Contact:
*ZHANG Chun-Yu(zcy_0520@163.com)Supported by:
摘要: 探究温带森林不同生活史阶段是否存在密度制约现象, 及密度制约的相对重要性是否随生活史阶段变化, 可为温带森林局域尺度物种共存提供理论依据。该研究基于对吉林蛟河针阔混交林21.12 hm2固定监测样地中451个幼苗监测样方连续3年(2016-2018)的动态监测以及乔木的复测数据, 运用广义线性混合模型、引入交互作用的广义线性混合模型、引入物种间随机效应和交互作用的广义线性混合模型和单独引入物种间随机效应的广义线性混合模型共4种模型, 在群落和物种2个水平分析密度制约对不同生活史阶段个体存活率的影响及其相对重要性。结果表明, 群落水平上, 同种邻域效应对所有生活史阶段的存活率都有较为显著的影响, 幼苗的存活率受到同种成树较显著的负向影响以及同种幼苗邻体的显著正向影响。幼树和成树阶段的存活率均受到同种邻体的显著负向影响。同种负密度制约(CNDD)随着生活史阶段而减弱。异种邻域效应随生活史阶段和邻域半径的变化而变化, 但没有明确的趋势。物种水平上, 仅在成树阶段, 邻域效应在物种间存在较显著的差异, 在其他生活史阶段, 同种邻域效应和异种邻域效应在种间的差异均不显著。负密度制约现象存在于该温带森林的所有生活史阶段, 且CNDD随生活史阶段减弱, 异种负密度制约对不同生活史阶段个体存活率的影响受邻域尺度影响, 但没有体现明显的趋势。由于受到“异群保护效应”或适宜生境等的影响, 同种幼苗邻体对幼苗个体的存活率呈现正向影响。受物种生活史策略、生活型及物种多度等影响, 邻域效应存在种间差异。该研究结果显示, 在探究影响局域尺度森林群落物种共存的机制时, 需结合多物种和多生活史阶段进行综合分析。
强亚琪, 张新娜, 王娟, 张春雨. 东北天然次生林同种和异种密度制约效应随生活史阶段变化规律. 植物生态学报, 2024, 48(12): 1612-1622. DOI: 10.17521/cjpe.2023.0293
QIANG Ya-Qi, ZHANG Xin-Na, WANG Juan, ZHANG Chun-Yu. Variation of conspecific and heterospecific density-dependent survival along life stages in natural secondary forests in Northeast China. Chinese Journal of Plant Ecology, 2024, 48(12): 1612-1622. DOI: 10.17521/cjpe.2023.0293
物种 Species | 幼苗 Seedling | 幼树 Sapling | 成树 Adult | DBH ≥ 1 cm个体数 No. of stems of DBH ≥ 1 cm | |||
---|---|---|---|---|---|---|---|
个体数 Individual No. | 平均基径 Average BD (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | ||
白桦 Betula platyphylla | - | - | - | - | 279 | 27.90 | 279 |
东北槭 Acer mandshuricum | 144 | 4.40 | 2 157 | 2.57 | 3 651 | 12.79 | 5 808 |
暴马丁香 Syringa reticulata var. amurensis | - | - | 670 | 2.75 | 1 095 | 5.74 | 1 765 |
稠李 Padus racemosa | - | - | 125 | 2.41 | 292 | 6.59 | 417 |
春榆 Ulmus davidiana var. japonica | 9 | 4.43 | 657 | 4.39 | 862 | 19.34 | 1 519 |
髭脉槭 Acer barbinerve | 114 | 6.07 | 1 170 | 1.88 | 825 | 3.51 | 1 995 |
大果榆 Ulmus macrocarpa | - | - | 109 | 4.54 | 221 | 25.32 | 330 |
硕桦 Betula costata | - | - | 32 | 8.09 | 444 | 28.66 | 476 |
黑樱桃 Cerasus maximowiczii | - | - | 31 | 3.00 | 30 | 28.60 | 61 |
红松 Pinus koraiensis | 193 | 1.82 | 201 | 5.11 | 2 118 | 31.82 | 2 319 |
胡桃楸 Juglans mandshurica | 43 | 4.58 | 34 | 2.85 | 1 940 | 8.50 | 1 974 |
朝鲜槐 Maackia amurensis | - | 36 | 4.66 | 111 | 13.54 | 147 | |
黄檗 Phellodendron amurense | 2 | 6.01 | 36 | 5.73 | 153 | 23.73 | 189 |
辽椴 Tilia mandshurica | 10 | 5.50 | 94 | 6.70 | 419 | 24.05 | 513 |
裂叶榆 Ulmus laciniata | 28 | 8.01 | 1 189 | 4.42 | 680 | 23.42 | 1 869 |
瘤枝卫矛 Euonymus verrucosus | - | - | 30 | 1.96 | 41 | 3.54 | 71 |
毛榛 Corylus mandshurica | - | - | 480 | 1.83 | 308 | 2.92 | 788 |
蒙古栎 Quercus mongolica | 1 | 1.97 | 144 | 6.85 | 626 | 32.45 | 770 |
三花槭 Acer triflorum | 2 | 1.30 | 270 | 4.03 | 539 | 20.93 | 809 |
千金榆 Carpinus cordata | 30 | 3.35 | 3 562 | 3.55 | 5 458 | 10.30 | 9 020 |
青楷槭 Acer tegmentosum | 4 | 6.10 | 225 | 5.06 | 195 | 13.86 | 420 |
色木槭 Acer mono | 233 | 2.61 | 3 864 | 3.50 | 4 319 | 20.74 | 8 183 |
杉松 Abies holophylla | 38 | 1.88 | 116 | 5.27 | 341 | 32.88 | 457 |
山荆子 Malus baccata | - | - | 50 | 3.54 | 30 | 14.33 | 80 |
山杨 Populus davidiana | - | - | - | - | 51 | 34.44 | 51 |
水曲柳 Fraxinus mandschurica | 1 786 | 1.42 | 89 | 7.44 | 1 948 | 30.51 | 2 037 |
水榆花楸 Sorbus alnifolia | - | - | 245 | 4.21 | 351 | 17.20 | 596 |
香杨 Populus koreana | - | - | - | - | 49 | 54.64 | 49 |
紫椴 Tilia amurensis | 312 | 1.36 | 494 | 6.58 | 1 898 | 27.66 | 2 392 |
合计 Total | 2 949 | 3.80 | 16 110 | 3.51 | 29 274 | 19.45 | 45 384 |
表1 东北天然次生林监测样地的物种及各阶段个体数
Table 1 Species and number of individuals at each life stage in the monitoring sample plots of natural secondary forests in Northeast China
物种 Species | 幼苗 Seedling | 幼树 Sapling | 成树 Adult | DBH ≥ 1 cm个体数 No. of stems of DBH ≥ 1 cm | |||
---|---|---|---|---|---|---|---|
个体数 Individual No. | 平均基径 Average BD (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | ||
白桦 Betula platyphylla | - | - | - | - | 279 | 27.90 | 279 |
东北槭 Acer mandshuricum | 144 | 4.40 | 2 157 | 2.57 | 3 651 | 12.79 | 5 808 |
暴马丁香 Syringa reticulata var. amurensis | - | - | 670 | 2.75 | 1 095 | 5.74 | 1 765 |
稠李 Padus racemosa | - | - | 125 | 2.41 | 292 | 6.59 | 417 |
春榆 Ulmus davidiana var. japonica | 9 | 4.43 | 657 | 4.39 | 862 | 19.34 | 1 519 |
髭脉槭 Acer barbinerve | 114 | 6.07 | 1 170 | 1.88 | 825 | 3.51 | 1 995 |
大果榆 Ulmus macrocarpa | - | - | 109 | 4.54 | 221 | 25.32 | 330 |
硕桦 Betula costata | - | - | 32 | 8.09 | 444 | 28.66 | 476 |
黑樱桃 Cerasus maximowiczii | - | - | 31 | 3.00 | 30 | 28.60 | 61 |
红松 Pinus koraiensis | 193 | 1.82 | 201 | 5.11 | 2 118 | 31.82 | 2 319 |
胡桃楸 Juglans mandshurica | 43 | 4.58 | 34 | 2.85 | 1 940 | 8.50 | 1 974 |
朝鲜槐 Maackia amurensis | - | 36 | 4.66 | 111 | 13.54 | 147 | |
黄檗 Phellodendron amurense | 2 | 6.01 | 36 | 5.73 | 153 | 23.73 | 189 |
辽椴 Tilia mandshurica | 10 | 5.50 | 94 | 6.70 | 419 | 24.05 | 513 |
裂叶榆 Ulmus laciniata | 28 | 8.01 | 1 189 | 4.42 | 680 | 23.42 | 1 869 |
瘤枝卫矛 Euonymus verrucosus | - | - | 30 | 1.96 | 41 | 3.54 | 71 |
毛榛 Corylus mandshurica | - | - | 480 | 1.83 | 308 | 2.92 | 788 |
蒙古栎 Quercus mongolica | 1 | 1.97 | 144 | 6.85 | 626 | 32.45 | 770 |
三花槭 Acer triflorum | 2 | 1.30 | 270 | 4.03 | 539 | 20.93 | 809 |
千金榆 Carpinus cordata | 30 | 3.35 | 3 562 | 3.55 | 5 458 | 10.30 | 9 020 |
青楷槭 Acer tegmentosum | 4 | 6.10 | 225 | 5.06 | 195 | 13.86 | 420 |
色木槭 Acer mono | 233 | 2.61 | 3 864 | 3.50 | 4 319 | 20.74 | 8 183 |
杉松 Abies holophylla | 38 | 1.88 | 116 | 5.27 | 341 | 32.88 | 457 |
山荆子 Malus baccata | - | - | 50 | 3.54 | 30 | 14.33 | 80 |
山杨 Populus davidiana | - | - | - | - | 51 | 34.44 | 51 |
水曲柳 Fraxinus mandschurica | 1 786 | 1.42 | 89 | 7.44 | 1 948 | 30.51 | 2 037 |
水榆花楸 Sorbus alnifolia | - | - | 245 | 4.21 | 351 | 17.20 | 596 |
香杨 Populus koreana | - | - | - | - | 49 | 54.64 | 49 |
紫椴 Tilia amurensis | 312 | 1.36 | 494 | 6.58 | 1 898 | 27.66 | 2 392 |
合计 Total | 2 949 | 3.80 | 16 110 | 3.51 | 29 274 | 19.45 | 45 384 |
模型类型 Model type | 模型表达式 Model expression | 固定效应 Fixed effect | 随机效应 Random effect |
---|---|---|---|
基础模型 Basic model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD | |
引入交互作用的模型 Interaction model | DBH, Con, Het, Con × DBH, Het × DBH | Species identity, Quadrat, DBH/BD | |
引入物种间随机效应的模型 Random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con, Het | |
单独引入物种间随机效应的模型 Individual random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con/Het | |
表2 用于检验东北天然次生林生物邻域相互作用对各生活史阶段个体存活率影响的4种模型
Table 2 Four models used to examine the impact of biological neighborhood interactions on individual survival at various life stages of natural secondary forests in Northeast China
模型类型 Model type | 模型表达式 Model expression | 固定效应 Fixed effect | 随机效应 Random effect |
---|---|---|---|
基础模型 Basic model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD | |
引入交互作用的模型 Interaction model | DBH, Con, Het, Con × DBH, Het × DBH | Species identity, Quadrat, DBH/BD | |
引入物种间随机效应的模型 Random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con, Het | |
单独引入物种间随机效应的模型 Individual random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con/Het | |
生物邻体变量 Biological neighborhood variable | 邻域半径 Neighbor radius (m) | AIC | ΔAIC |
---|---|---|---|
幼苗邻体变量_1 Seedling_1 | 5 | 1 991.4 | -1.3 |
10 | 1 992.0 | -0.7 | |
15 | 1 992.7 | 0.0 | |
20 | 1 994.2 | 1.5 | |
幼苗邻体变量_2 Seedling_2 | 5 | 1 992.9 | 0.3 |
10 | 1 993.8 | 1.2 | |
15 | 1 992.6 | 0.0 | |
20 | 1 995.2 | 2.6 | |
幼苗邻体变量_3 Seedling_3 | 1 | 1 991.8 | 0.0 |
幼树邻体变量 Sapling | 5 | 17 173.4 | 2.5 |
10 | 17 172.0 | 1.1 | |
15 | 17 170.9 | 0.0 | |
20 | 17 164.2 | -6.7 | |
成树邻体变量 Adult | 5 | 17 892.6 | 4.0 |
10 | 17 889.0 | 0.4 | |
15 | 17 888.6 | 0.0 | |
20 | 17 895.5 | 6.9 |
表3 东北天然次生林各阶段不同邻域半径的赤池信息量准则(AIC)和ΔAIC值
Table 3 Akaike’s Information Criterion (AIC) values and ΔAIC values for different neighborhood radius at various stages of natural secondary forests in Northeast China
生物邻体变量 Biological neighborhood variable | 邻域半径 Neighbor radius (m) | AIC | ΔAIC |
---|---|---|---|
幼苗邻体变量_1 Seedling_1 | 5 | 1 991.4 | -1.3 |
10 | 1 992.0 | -0.7 | |
15 | 1 992.7 | 0.0 | |
20 | 1 994.2 | 1.5 | |
幼苗邻体变量_2 Seedling_2 | 5 | 1 992.9 | 0.3 |
10 | 1 993.8 | 1.2 | |
15 | 1 992.6 | 0.0 | |
20 | 1 995.2 | 2.6 | |
幼苗邻体变量_3 Seedling_3 | 1 | 1 991.8 | 0.0 |
幼树邻体变量 Sapling | 5 | 17 173.4 | 2.5 |
10 | 17 172.0 | 1.1 | |
15 | 17 170.9 | 0.0 | |
20 | 17 164.2 | -6.7 | |
成树邻体变量 Adult | 5 | 17 892.6 | 4.0 |
10 | 17 889.0 | 0.4 | |
15 | 17 888.6 | 0.0 | |
20 | 17 895.5 | 6.9 |
图1 东北天然次生林不同邻域半径各生活史阶段同种和异种邻域效应。直线的长度表示95%置信区间, 线中间的圆表示每个邻体变量的效应量估计值; x = 0表示无效线。Adult, 成树邻体变量; Sapling, 幼树邻体变量; Seedling_1, 幼苗邻体变量_1; Seedling_2, 幼苗邻体变量_2; Seedling_3, 幼苗邻体变量_3。
Fig. 1 Conspecific and heterospecific neighborhood effects at various life history stages in different neighborhood radius in natural secondary forests in Northeast China. The horizontal coordinate of the graph indicates the effect size; the length of the line indicates the 95% confidence interval (CI), and the point in the middle of the line indicates the estimated value of the effect size of each neighborhood variables; the line x = 0 indicates the invalid line. Adult, adult neighborhood variable; Sapling, sapling neighborhood variable; Seedling_1, seedling neighborhood variable_1; Seedling_2, seedling neighborhood variable_2; Seedling_3, seedling neighborhood variable_3.
图2 东北天然次生林同种和异种邻域效应对个体生存概率的预测随同种和异种邻体变量的变化。Adult, 成树邻体变量; Sapling, 幼树邻体变量; Seedling_2, 幼苗邻体变量_2; Seedling_3, 幼苗邻体变量_3。
Fig. 2 Trend of predicted conspecific and heterospecific neighborhood variables on the probability of survival of individuals with neighborhood variables in natural secondary forests in Northeast China. Adult, adult neighborhood variable; Sapling, sapling neighborhood variable; Seedling_2, seedling neighborhood variable_2; Seedling_3, seedling neighborhood variable_3.
变量 Variable | 估计 Estimate | 标准误 SE | z | p |
---|---|---|---|---|
截距 Intercept | -0.972 5 | 0.304 7 | -3.19 | 0.001 4 |
胸径 DBH | 0.973 5 | 0.118 5 | 8.22 | <0.000 1 |
同种邻体变量 Con | -0.165 8 | 0.041 3 | -4.02 | <0.000 1 |
异种邻体变量 Het | -0.025 5 | 0.033 4 | -0.76 | 0.444 6 |
胸径与同种邻体变量交互作用 DBH × Con | 0.036 6 | 0.018 1 | 2.03 | 0.042 8 |
胸径与异种邻体变量交互作用 DBH × Het | 0.000 6 | 0.016 0 | 0.04 | 0.971 4 |
表4 东北天然次生林同种(异种)邻域效应与个体大小相关关系
Table 4 Correlation between the conspecific (heterospecific) neighborhood effect and individual size in natural secondary forests in Northeast China
变量 Variable | 估计 Estimate | 标准误 SE | z | p |
---|---|---|---|---|
截距 Intercept | -0.972 5 | 0.304 7 | -3.19 | 0.001 4 |
胸径 DBH | 0.973 5 | 0.118 5 | 8.22 | <0.000 1 |
同种邻体变量 Con | -0.165 8 | 0.041 3 | -4.02 | <0.000 1 |
异种邻体变量 Het | -0.025 5 | 0.033 4 | -0.76 | 0.444 6 |
胸径与同种邻体变量交互作用 DBH × Con | 0.036 6 | 0.018 1 | 2.03 | 0.042 8 |
胸径与异种邻体变量交互作用 DBH × Het | 0.000 6 | 0.016 0 | 0.04 | 0.971 4 |
图3 东北天然次生林同种和异种邻域效应下幼苗、幼树及成树存活率表现正向(负向)的种间差异频率分布图。某个值<0代表同种(异种)邻域效应对存活率的负向影响, >0代表同种(异种)邻域效应对存活率的正向影响。DBH, 胸径。
Fig. 3 Histograms of positive (negative) interspecies differences in survival rates of seedlings, saplings and adult trees under the conspecific and heterospecific neighborhood effects in natural secondary forests in Northeast China. The value < 0 represents the negative impact of the conspecific (heterospecific) neighborhood effect on survival rate, while the value > 0 represents the positive impact on survival rate. DBH, diameter at breast height.
[1] | Bachelot B, Uríarte M, Thompson J, Zimmerman JK (2016). The advantage of the extremes: tree seedlings at intermediate abundance in a tropical forest have the highest richness of above-ground enemies and suffer the most damage. Journal of Ecology, 104, 90-103. |
[2] | Blundell AG, Peart DR (2004). Density-dependent population dynamics of a dominant rain forest canopy tree. Ecology, 85, 704-715. |
[3] | Boege K, Marquis RJ (2006). Plant quality and predation risk mediated by plant ontogeny: consequences for herbivores and plants. Oikos, 115, 559-572. |
[4] | Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, White JS (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127-135. |
[5] | Chen L, Comita LS, Wright SJ, Swenson NG, Zimmerman JK, Mi XC, Hao ZQ, Ye WH, Hubbell SP, Kress WJ, Uriarte M, Thompson J, Nytch CJ, Wang XG, Lian JY, Ma KP (2018). Forest tree neighborhoods are structured more by negative conspecific density dependence than by interactions among closely related species. Ecography, 41, 1114-1123. |
[6] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
DOI PMID |
[7] |
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu KY, Krishnadas M, Beckman N, Zhu Y, Gómez-Aparicio L (2014). Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology, 102, 845-856.
PMID |
[8] | Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK (2009). Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. Journal of Ecology, 97, 1346-1359. |
[9] | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees// Dynamics of Populations. Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands. 298-313. |
[10] | Dalgleish HJ, Monteith L, Collins E (2023). Age, size and neighbors influence the survival and growth of understory trees in a naturally reproducing population of American chestnut, Castanea dentata. Forest Ecology and Management, 532, 120824. DOI: 10.1016/j.foreco.2023.120824. |
[11] | Fan CY, Zhang CY, Zhao XH (2022). Functional traits explain growth-mortality trade-offs in a mixed broadleaf-conifer forest in northeastern China. European Journal of Forest Research, 141, 117-128. |
[12] | Franklin AB, Anderson DR, Burnham KP (2002). Estimation of long-term trends and variation in avian survival probabilities using random effects models. Journal of Applied Statistics, 29, 267-287. |
[13] | Getzin S, Dean C, He F, Trofymow JA, Wiegand K, Wiegand T (2006). Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 29, 671-682. |
[14] | Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[15] | Harms KE, Wright SJ, Calderón O, Hernández A, Herre EA (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495. |
[16] | Hille Ris Lambers J, Clark JS, Beckage B (2002). Density- dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. |
[17] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001). Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859-875. |
[18] | Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
[19] | Jevon FV, de la Cruz D, LaManna JA, Lang AK, Orwig DA, Record S, Kouba PV, Ayres MP, Matthes JH (2022). Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees. Ecology, 103, e3808. DOI: 10.1002/ecy.3808. |
[20] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI PMID |
[21] | LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, Bunyavejchewin S, Chang LW, Chiang JM, Chuyong GB, Clay K, Condit R, Cordell S, Davies SJ, Furniss TJ, Giardina CP, et al. (2017). Plant diversity increases with the strength of negative density dependence at the global scale. Science, 356, 1389-1392. |
[22] | Lin LX, Comita LS, Zheng Z, Cao M (2012). Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905-914. |
[23] |
Liu HM, Ma ZP, Yang QS, Fang XF, Lin QK, Zong Y, Aqing A, Wang XH (2017). Relationships between established seedling survival and growth in evergreen broad-leaved forest in Tiantong. Biodiversity Science, 25, 11-22.
DOI |
[ 刘何铭, 马遵平, 杨庆松, 方晓峰, 林庆凯, 宗意, 阿尔达克·阿庆, 王希华 (2017). 天童常绿阔叶林定居幼苗存活和生长的关联. 生物多样性, 25, 11-22.]
DOI |
|
[24] |
Lu J, Johnson DJ, Qiao X, Lu Z, Wang Q, Jiang M (2015). Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. Journal of Plant Ecology, 8, 568-577.
DOI |
[25] | Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755. |
[26] | Meng LJ, Zhang CY, Yao J, Zhao XH (2019). Effects of density and habitat on Arbor seedling survival in a mixed conifer and broad-leaved forest in Jiaohe, Jilin Province. Scientia Silvae Sinicae, 55(11), 172-180. |
[ 孟令君, 张春雨, 姚杰, 赵秀海 (2019). 吉林蛟河针阔混交林乔木幼苗存活对密度和生境的响应. 林业科学, 55(11), 172-180.] | |
[27] | Metz MR, Sousa WP, Valencia R (2010). Widespread density- dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology, 91, 3675-3685. |
[28] | Nathan R, Muller-Landau HC (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278-285. |
[29] | Packer A, Clay K (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281. |
[30] | Peters HA (2003). Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765. |
[31] |
Piao TF, Comita LS, Jin GZ, Kim JH (2013). Density dependence across multiple life stages in a temperate old-growth forest of Northeast China. Oecologia, 172, 207-217.
DOI PMID |
[32] | Pu XC (2021). Variation and the Driving Mechanism of Density Dependence in Temperate Forests, Northeastern China. PhD dissertation,Northeast Forestry University, Harbin. 20-27. |
[ 濮旭才 (2021). 东北温带森林密度制约变异及其影响机制. 博士学位论文, 东北林业大学, 哈尔滨. 20-27.] | |
[33] | Schupp EW (1992). The Janzen-Connell model for tropical tree diversity: population implications and the importance of spatial scale. The American Naturalist, 140, 526-530. |
[34] | Song X, Johnson DJ, Cao M, Umaña MN, Deng X, Yang X, Zhang W, Yang J (2018). The strength of density-dependent mortality is contingent on climate and seedling size. Journal of Vegetation Science, 29, 662-670. |
[35] | Stoll P, Newbery DM (2005). Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048-3062. |
[36] | Umaña MN, Zipkin EF, Zhang C, Cao M, Lin L, Swenson NG (2018). Individual-level trait variation and negative density dependence affect growth in tropical tree seedlings. Journal of Ecology, 106, 2446-2455. |
[37] | Wu H, Franklin SB, Liu J, Lu Z (2017). Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. Forest Ecology and Management, 384, 169-179. |
[38] | Yao J (2019). Patterns of Species Diversity and Its Maintenance Machanism in Jiaohe Coniferous and Broad- leaved Mixed Forest, Jilin Province. PhD dissertation,Beijing Forestry University, Beijing. 84-97. |
[ 姚杰 (2019). 吉林蛟河针阔混交林物种多样性格局及维持机制. 博士学位论文, 北京林业大学, 北京. 84-97.] | |
[39] | Yao J, Bachelot B, Meng L, Qin J, Zhao X, Zhang C (2020). Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. Journal of Ecology, 108, 1299-1310. |
[40] | Zhu Y, Comita LS, Hubbell SP, Ma K (2015). Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957-966. |
[41] |
Zhu Y, Queenborough SA, Condit R, Hubbell SP, Ma K, Comita LS (2018). Density-dependent survival varies with species life-history strategy in a tropical forest. Ecology Letters, 21, 506-515.
DOI PMID |
[1] | 文佳, 张新娜, 王娟, 赵秀海, 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应[J]. 植物生态学报, 2024, 48(6): 719-729. |
[2] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[3] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[4] | 闫琰, 张新娜, 姚杰, 张春雨, 赵秀海. 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态[J]. 植物生态学报, 2016, 40(2): 127-139. |
[5] | 徐波, 王金牛, 石福孙, 高景, 吴宁. 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应[J]. 植物生态学报, 2013, 37(3): 187-196. |
[6] | 沈有信, 赵春燕. 持久性土壤种子库种子萌发的个体竞争能力会衰减吗?——以紫茎泽兰为例[J]. 植物生态学报, 2012, 36(8): 754-762. |
[7] | 黎磊, 周道玮. 红葱种群地上和地下构件的密度制约调节[J]. 植物生态学报, 2011, 35(3): 284-293. |
[8] | 陈英. 常绿阔叶林谱系多样性对幼苗存活率的影响[J]. 植物生态学报, 2009, 33(6): 1084-1089. |
[9] | 王仁忠. 松嫩草原拂子茅种群密度制约的研究[J]. 植物生态学报, 1998, 22(1): 85-89. |
[10] | 李睿, 钟章成, M. J. A. 维尔格. 毛竹的无性系生长与立竹密度和叶龄结构的关系[J]. 植物生态学报, 1997, 21(6): 545-550. |
[11] | 李睿, 钟章成, M. J. A. 维尔格. 中国亚热高大竹类植物毛竹竹笋克隆生长的密度调节(英文)[J]. 植物生态学报, 1997, 21(1): 9-18. |
[12] | 杨允菲, 张宏一, 张宝田. 松嫩平原碱化草甸天然碱地肤种群的密度制约规律[J]. 植物生态学报, 1994, 18(1): 23-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19