植物生态学报 ›› 2013, Vol. 37 ›› Issue (3): 187-196.DOI: 10.3724/SP.J.1258.2013.00019
所属专题: 青藏高原植物生态学:群落生态学
• 研究论文 • 下一篇
徐波1,2, 王金牛1,2, 石福孙1, 高景3, 吴宁1,*()
发布日期:
2014-02-12
通讯作者:
吴宁
作者简介:
E-mail: wuning@cib.ac.cn基金资助:
XU Bo1,2, WANG Jin-Niu1,2, SHI Fu-Sun1, GAO Jing3, WU Ning1,*()
Published:
2014-02-12
Contact:
WU Ning
摘要:
从时空尺度研究了青藏高原东缘野生暗紫贝母(Fritillaria unibracteata)生物量分配特征对高山环境条件的生态适应。通过海拔梯度、群落类型、群落盖度、群落透光率4个变量的分析, 间接探讨了高山环境条件下水分、热量、光照和土壤养分等主要环境因子对暗紫贝母生物量分配的影响, 并主要研究了海拔梯度这一综合要素的生态效应。同时, 从时间尺度上研究了暗紫贝母不同生活史阶段的生物量分配模式, 以期了解不同发育阶段高山植物对于环境要素的适应特征。研究结果表明: 1)在一定的空间范围内, 4个环境变量中仅海拔梯度对暗紫贝母单株鳞茎生物量及总生物量的影响差异显著, 且生物量积累随海拔升高而减小。2)在空间尺度上, 海拔梯度为野生暗紫贝母生长的主要限制因子, 表明在高山地区热量条件对植物生长具有明显的制约作用, 同时不同生活史阶段的暗紫贝母其生物量分配模式对海拔梯度的响应也存在着一定的差异。2年生贝母的鳞茎生物量分配随海拔升高而降低, 叶生物量分配随之增加。3年生和4年生贝母鳞茎及叶生物量分配在不同海拔梯度上比较稳定, 而茎生物量分配随海拔升高而降低, 有性生殖(花)分配则随之而增加。各生活史阶段植株根生物量在不同海拔梯度上分配稳定。3)在时间尺度上, 不同生活史阶段贝母生物量分配模式存在显著差异。根和茎生物量分配随生活史阶段的增加而显著增加, 而鳞茎和叶生物量分配则随之显著减少。单株鳞茎生物量在3年生阶段达到最大。
徐波, 王金牛, 石福孙, 高景, 吴宁. 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应. 植物生态学报, 2013, 37(3): 187-196. DOI: 10.3724/SP.J.1258.2013.00019
XU Bo, WANG Jin-Niu, SHI Fu-Sun, GAO Jing, WU Ning. Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2013, 37(3): 187-196. DOI: 10.3724/SP.J.1258.2013.00019
地点 Location | 经纬度 Latitude and longitude | 海拔 Elevation (m) | 群落类型 Community type | 采样时间 Sampling date (year-month-day) |
---|---|---|---|---|
七让山 Qirang Mt. | 103°41′52″ E, 32°59′3″ N | 3 400-3 500 | 窄叶鲜卑花-蒙古绣线菊-羊茅高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Festuca ovina alpine shrub meadow | 2012-7-14 |
弓杠岭 Gonggang Mt. | 103°42′57″ E, 33°1′48″ N | 3 500-3 600 | 窄叶鲜卑花-蒙古绣线菊-珠芽蓼高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Polygonum vivipar- um alpine shrub meadow | 2012-7-15 |
卡卡山 Kaka Mt. | 103°42′35″ E, 32°59′12″ N | 3 600-4 000 | 金露梅-窄叶鲜卑花-暗褐薹草高山灌丛草甸 Potentilla fruticosa-Sibiraea angustata-Carex atrofusca alpine shrub meadow | 2012-7-16- 2012-7-18 |
表1 植物样品来源
Table 1 Sources of plant sample
地点 Location | 经纬度 Latitude and longitude | 海拔 Elevation (m) | 群落类型 Community type | 采样时间 Sampling date (year-month-day) |
---|---|---|---|---|
七让山 Qirang Mt. | 103°41′52″ E, 32°59′3″ N | 3 400-3 500 | 窄叶鲜卑花-蒙古绣线菊-羊茅高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Festuca ovina alpine shrub meadow | 2012-7-14 |
弓杠岭 Gonggang Mt. | 103°42′57″ E, 33°1′48″ N | 3 500-3 600 | 窄叶鲜卑花-蒙古绣线菊-珠芽蓼高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Polygonum vivipar- um alpine shrub meadow | 2012-7-15 |
卡卡山 Kaka Mt. | 103°42′35″ E, 32°59′12″ N | 3 600-4 000 | 金露梅-窄叶鲜卑花-暗褐薹草高山灌丛草甸 Potentilla fruticosa-Sibiraea angustata-Carex atrofusca alpine shrub meadow | 2012-7-16- 2012-7-18 |
海拔梯度与群落特征 Elevation gradient and community characters | 单株鳞茎生物量 Individual bulb biomass | 单株总生物量 Individual total biomass | |||||
---|---|---|---|---|---|---|---|
df | F | p | df | F | p | ||
海拔梯度 Elevation gradient | 5 | 19.65 | <0.000 1 | 5 | 20.75 | <0.000 1 | |
群落类型 Community type | 1 | 0.05 | 0.82 | 1 | 0.09 | 0.77 | |
群落盖度 Community coverage | 3 | 0.74 | 0.53 | 3 | 0.96 | 0.41 | |
群落透光率 Community transmittance | 4 | 1.68 | 0.16 | 4 | 1.52 | 0.20 | |
海拔×群落类型 Elevation × community type | 5 | 1.52 | 0.18 | 5 | 1.33 | 0.25 | |
海拔×群落盖度 Elevation × community coverage | 13 | 1.24 | 0.25 | 13 | 0.98 | 0.48 | |
海拔×群落透光率 Elevation × community transmittance | 18 | 1.17 | 0.29 | 18 | 0.99 | 0.47 | |
群落类型×群落盖度 Community type × community coverage | 3 | 1.58 | 0.20 | 3 | 1.31 | 0.27 | |
群落类型×群落透光率 Community type × community transmittance | 4 | 1.87 | 0.12 | 4 | 3.47 | 0.01 | |
群落盖度×群落透光率 Community coverage × community transmittance | 12 | 1.21 | 0.28 | 12 | 0.64 | 0.80 |
表2 海拔梯度与群落特征对暗紫贝母单株鳞茎生物量及单株总生物量的影响
Table 2 Effects of elevation gradient and community characters on individual bulb biomass and total biomass of Fritillaria unibracteata
海拔梯度与群落特征 Elevation gradient and community characters | 单株鳞茎生物量 Individual bulb biomass | 单株总生物量 Individual total biomass | |||||
---|---|---|---|---|---|---|---|
df | F | p | df | F | p | ||
海拔梯度 Elevation gradient | 5 | 19.65 | <0.000 1 | 5 | 20.75 | <0.000 1 | |
群落类型 Community type | 1 | 0.05 | 0.82 | 1 | 0.09 | 0.77 | |
群落盖度 Community coverage | 3 | 0.74 | 0.53 | 3 | 0.96 | 0.41 | |
群落透光率 Community transmittance | 4 | 1.68 | 0.16 | 4 | 1.52 | 0.20 | |
海拔×群落类型 Elevation × community type | 5 | 1.52 | 0.18 | 5 | 1.33 | 0.25 | |
海拔×群落盖度 Elevation × community coverage | 13 | 1.24 | 0.25 | 13 | 0.98 | 0.48 | |
海拔×群落透光率 Elevation × community transmittance | 18 | 1.17 | 0.29 | 18 | 0.99 | 0.47 | |
群落类型×群落盖度 Community type × community coverage | 3 | 1.58 | 0.20 | 3 | 1.31 | 0.27 | |
群落类型×群落透光率 Community type × community transmittance | 4 | 1.87 | 0.12 | 4 | 3.47 | 0.01 | |
群落盖度×群落透光率 Community coverage × community transmittance | 12 | 1.21 | 0.28 | 12 | 0.64 | 0.80 |
图1 海拔对暗紫贝母单株鳞茎生物量及单株总生物量的影响(平均值±标准误差)。不同字母表示同一生活史阶段在不同海拔梯度上生物量差异极显著(p < 0.01)。
Fig. 1 Effects of elevation on individual bulb biomass and total biomass of Fritillaria unibracteata (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass of plants with the same life history stage at different elevations.
图2 海拔对暗紫贝母生物量分配的影响(平均值±标准误差)。不同字母表示同一生活史阶段植物生物量分配在不同海拔梯度上差异极显著(p < 0.01)。
Fig. 2 Effects of elevation on biomass allocation of Fritillaria unibracteata (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass allocation of plants with the same life history stage at different elevations.
图3 不同生活史阶段暗紫贝母单株鳞茎生物量及总生物量特征(平均值±标准误差)。不同字母表示不同生活史阶段植物生物量差异极显著(p < 0.01)。
Fig. 3 Characteristics of individual bulb biomass and total biomass of Fritillaria unibracteata at different life history stages (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass of plants with different life history stages. IBB, individual bulb biomass; ITB, individual total biomass.
图4 不同生活史阶段暗紫贝母生物量分配特征(平均值±标准误差)。不同字母表示不同生活史阶段植物生物量分配差异极显著(p < 0.01)。
Fig. 4 Characteristics of biomass allocation of Fritillaria unibracteata at different life history stages (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass allocation of plants with different life history stages. BBA, bulb biomass allocation; LBA, leaf biomass allocation; RBA, root biomass allocation; SBA, stem biomass allocation;
[1] | Adler A, Karacic A, Weih M (2008). Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant and Soil, 305, 189-206. |
[2] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants—an economic analogue. Annual Review of Ecology and Systematics, 16, 363-392. |
[3] |
Bowman WD, Conant RT (1994). Shoot growth dynamics and photosynthetic response to increased nitrogen availability in the alpine willow Salix glauca. Oecologia, 97, 93-99.
URL PMID |
[4] |
Callaway RM, DeLucia EH, Thomas EM, Schlesinger WH (1994). Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia, 98, 159-166.
URL PMID |
[5] | Chen SL, Xiao XH, Chen SY (1997). Numerical studies on spatial distribution pattern of Fritillaria unibracteata community. Journal of Southwest China Normal University (Natural Science Edition), 22, 416-420. (in Chinese with English abstract) |
[ 陈士林, 肖小河, 陈善墉 (1997). 暗紫贝母植被分布格局的数值分析. 西南师范大学学报(自然科学版), 22, 416-420.] | |
[6] | Chen WN, Chen FJ, Xie YH, Wang Y, Duan HG, Qi ZM (2012). Variation of phenology and bulbs of Fritillaria unibracteata along altitudinal gradients. Acta Prataculturae Sinica, 21, 319-324. (in Chinese with English abstract) |
[ 陈文年, 陈发军, 谢玉华, 王淯, 段辉国, 齐泽民 (2012). 暗紫贝母的物候和鳞茎在海拔梯度上的变化. 草业学报, 21, 319-324.] | |
[7] |
Coleman JS, McConnaughay KDM, Ackerly DD (1994). Interpreting phenotypic variation in plants. Trends in Ecology & Evolution, 9, 187-191.
URL PMID |
[8] |
Diggle PK (1997). Extreme preformation in alpine Polygonum viviparum: an architectural and developmental analysis. American Journal of Botany, 84, 154-169.
URL PMID |
[9] | Fabbro T, Körner C (2004). Altitudinal differences in flower traits and reproductive allocation. Flora, 199, 70-81. |
[10] |
Gedroc JJ, Mcconnaughay KDM, Coleman JS (1996). Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Functional Ecology, 10, 44-50.
DOI URL |
[11] |
Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2007). Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecological Research, 22, 255-260.
DOI URL |
[12] |
Guo H, Mazer SJ, Du GZ (2010). Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis (Orobanchaceae): proportional male investment increases with elevation. American Journal of Botany, 97, 1334-1341.
URL PMID |
[13] |
Hautier Y, Randin CF, Stöcklin J, Guisan A (2009). Changes in reproductive investment with altitude in an alpine plant. Journal of Plant Ecology, 2, 125-134.
DOI URL |
[14] |
Hermans C, Hammond JP, White PJ, Verbruggen N (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11, 610-617.
DOI URL PMID |
[15] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer-VerlagHeidelberg. |
[16] | Li XW, Chen SL (2008). Effect of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Fritillaria cirrhosa. Acta Ecologica Sinica, 28, 3438-3446. (in Chinese with English abstract) |
[ 李西文, 陈士林 (2008). 遮阴下高原濒危药用植物川贝母(Fritillaria cirrhosa)光合作用和叶绿素荧光特征. 生态学报, 28, 3438-3446.] | |
[17] | Liu XQ (1994). An comparison experiment of Fritillaria unibracteata and Fritillaria taipaiensis. China Journal of Chinese Materia Medica, 19(2), 81-82. (in Chinese) |
[ 刘先齐 (1994). 暗紫贝母与太白贝母的引种比较试验. 中国中药杂志, 19(2), 81-82.] | |
[18] | Lusk CH, Falster DS, Jara-Vergara CK, Jimenez-Castillo M, Saldaña-Mendoza A (2008). Ontogenetic variation in light requirements of juvenile rainforest evergreens. Functional Ecology, 22, 454-459. |
[19] |
Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX, Chai SY (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China: Life Sciences, 53, 1142-1151.
DOI URL PMID |
[20] | Mani MS (1962). Introduction to High Altitude Entomology: Insect Life Above Timber-Line in the North-Western Himalayas. Methuen, London. |
[21] | Moriuchi KS, Winn AA (2005). Relationships among growth, development and plastic response to environment quality in a perennial plant. New Phytologist, 166, 149-158. |
[22] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[23] | Shi FS, Wu N, Wu Y (2010). Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, Northwestern Sichuan, China. Chinese Journal of Plant Ecology, 34, 488-497. (in Chinese with English abstract) |
[ 石福孙, 吴宁, 吴彦 (2010). 川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应. 植物生态学报, 34, 488-497.] | |
[24] | Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331. |
[25] | Stearns SC (1992). The Evolution of Life Histories. Oxford University Press, Oxford. |
[26] | Wang YF, Liu QQ, Pei ZY, Li HY (2012). Correlation between altitude and reproductive allocation in three Saussurea species on China’s Qinghai-Tibetan Plateau. Chinese Journal of Plant Ecology, 36, 39-46. (in Chinese with English abstract) |
[ 王一峰, 刘启茜, 裴泽宇, 李海燕 (2012). 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性. 植物生态学报, 36, 39-46.] | |
[27] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[28] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20, 177-184. |
[29] | Yun HX, Chen Z (2010). Research survey of Fritillaria unibracteata. Chinese Traditional Patent Medicine, 32, 1020-1024. (in Chinese) |
[ 韵海霞, 陈志 (2010). 暗紫贝母研究概况. 中成药, 32, 1020-1024.] | |
[30] | Zhang LJ, Shi YX, Pan XL (2007). Analysis of correlativity between reproductive allocation and altitude in plants. Journal of Northwest University (Natural Science Edition), 37, 77-80, 90. (in Chinese with English abstract) |
[ 张林静, 石云霞, 潘晓玲 (2007). 草本植物繁殖分配与海拔高度的相关分析. 西北大学学报(自然科学版), 37, 77-80, 90.] | |
[31] | Zhao ZG, Du GZ, Zhou XH, Wang MT, Ren QJ (2006). Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Australian Journal of Botany, 54, 691-700. |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[8] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[9] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[10] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[11] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[12] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
[13] | 马明哲, 申国珍, 熊高明, 赵常明, 徐文婷, 周友兵, 谢宗强. 神农架自然遗产地植被垂直带谱的特点和代表性[J]. 植物生态学报, 2017, 41(11): 1127-1139. |
[14] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[15] | 于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19