Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (11): 1033-1043.DOI: 10.17521/cjpe.2015.0100
Special Issue: 碳循环
• Orginal Article • Next Articles
WANG Xin-Qi, WANG Chuan-Kuan*(), HAN Yi
Received:
2015-02-02
Accepted:
2015-08-13
Online:
2015-11-01
Published:
2015-12-02
Contact:
Chuan-Kuan WANG
About author:
# Co-first authors
WANG Xin-Qi,WANG Chuan-Kuan,HAN Yi. Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species[J]. Chin J Plan Ecolo, 2015, 39(11): 1033-1043.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0100
树种 Tree species | 基径 Basal diameter (cm) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤pH值 Soil pH value |
---|---|---|---|---|---|
白桦 Betula platyphylla | 10.64 ± 2.84 | 7.61 ± 2.13 | 10.07 ± 1.19 | 3.37 ± 0.11 | 4.64 ± 0.05 |
胡桃楸 Juglans mandshurica | 5.81 ± 2.90 | 3.63 ± 1.90 | 3.74 ± 1.79 | 3.54 ± 0.21 | 4.77 ± 0.04 |
水曲柳 Fraxinus mandshurica | 13.73 ± 16.60 | 7.50 ± 9.97 | 3.01 ± 2.10 | 3.63 ± 0.21 | 4.75 ± 0.05 |
落叶松 Larix gmelinii | 9.32 ± 2.97 | 7.46 ± 4.07 | 6.80 ± 1.48 | 3.16 ± 0.15 | 4.69 ± 0.06 |
樟子松 Pinus sylvestris var. mongolica | 9.75 ± 2.08 | 7.36 ± 3.49 | 4.66 ± 0.65 | 3.40 ± 0.11 | 4.79 ± 0.05 |
Table 1 Site characteristics in the monocultures of five tree species (mean ± SD)
树种 Tree species | 基径 Basal diameter (cm) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤pH值 Soil pH value |
---|---|---|---|---|---|
白桦 Betula platyphylla | 10.64 ± 2.84 | 7.61 ± 2.13 | 10.07 ± 1.19 | 3.37 ± 0.11 | 4.64 ± 0.05 |
胡桃楸 Juglans mandshurica | 5.81 ± 2.90 | 3.63 ± 1.90 | 3.74 ± 1.79 | 3.54 ± 0.21 | 4.77 ± 0.04 |
水曲柳 Fraxinus mandshurica | 13.73 ± 16.60 | 7.50 ± 9.97 | 3.01 ± 2.10 | 3.63 ± 0.21 | 4.75 ± 0.05 |
落叶松 Larix gmelinii | 9.32 ± 2.97 | 7.46 ± 4.07 | 6.80 ± 1.48 | 3.16 ± 0.15 | 4.69 ± 0.06 |
樟子松 Pinus sylvestris var. mongolica | 9.75 ± 2.08 | 7.36 ± 3.49 | 4.66 ± 0.65 | 3.40 ± 0.11 | 4.79 ± 0.05 |
Fig. 1 Comparisons of soil bulk density (A), soil organic carbon concentration (B), and soil organic carbon density (C) among the monocultures of five tree species for 0-40 cm soil layer (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters indicate significant differences among tree species.
Fig. 2 Comparisons of the vertical changes in soil bulk density (A), soil organic carbon concentration (B), and soil organic carbon density (C) among the monocultures of five tree species (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters within the same soil layers indicate significant differences among tree species, and the soil layers without designation of letters are not significantly different among groups.
Fig. 3 Vertical changes in the percentage of soil organic carbon in each soil layer over the total soil organic carbon in the monocultures of five tree species (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters within the same soil layers indicate significant differences among tree species.
Fig. 4 Comparisons of the vertical changes in soil microbial biomass carbon concentration (A) and density (B) among the monocultures of five tree species (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters within the same soil layers indicate significant differences among tree species, and the soil layers without designation of letters are not significantly different among groups.
![]() |
Table2 Pearson correlation coefficients among soil organic carbon concentration,soil organic carbon density and related factors in the monocultures of five tree species
![]() |
1 | Adam Langley J, Chapman SK, Hungate BA (2006). Ectomycorrhizal colonization slows root decomposition: The post-mortem fungal legacy.Ecology Letters, 9, 955-959. |
2 | Bauhus J, Paré D, Côté L (1998). Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest.Soil Biology & Biochemistry, 30, 1077-1089. |
3 | Bremner J, Mulvaney C (1982). Nitrogen-total. In: Page AL, Miller RH, Keeney DR eds. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison. 595-624. |
4 | Díaz-Pinés E, Rubio A, van Miegroet H, Montes F, Benito M (2011). Does tree species composition control soil organic carbon pools in Mediterranean mountain forests?Forest Ecology and Management, 262, 1895-1904. |
5 | Dijkstra FA, Fitzhugh RD (2003). Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States.Geoderma, 114, 33-47. |
6 | Ellert BH, Bettany JR (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes.Canadian Journal of Soil Science, 75, 529-538. |
7 | Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply.Nature, 450, 277-280. |
8 | Fröberg M, Hansson K, Kleja DB, Alavi G (2011). Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden.Forest Ecology and Management, 262, 1742-1747. |
9 | Guo ZL, Zheng JP, Ma YD, Li QK, Yu GR, Han SJ, Fan CN, Liu WD (2006). Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China.Acta Ecologica Sinica, 26, 1037-1046. |
(in Chinese with English abstract) [郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德 (2006). 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 26, 1037-1046.] | |
10 | Gurmesa GA, Schmidt IK, Gundersen P, Vesterdal L (2013). Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens.Forest Ecology and Management, 309, 47-57. |
11 | Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgård B (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land.Forest Ecology and Management, 195, 373-384. |
12 | Han YY, Huang W, Sun T, Lu B, Mao ZJ (2015). Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China.Acta Ecologica Sinica, 35, 1460-1469. |
(in Chinese with English abstract) [韩营营, 黄唯, 孙涛, 陆彬, 毛子军 (2015). 不同林龄白桦天然次生林土壤碳通量和有机碳储量. 生态学报, 35, 1460-1469.] | |
13 | Hansson K, Helmisaari HS, Sah SP, Lange H (2013). Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden.Forest Ecology and Management, 309, 58-65. |
14 | Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007). Tree species effects on soil organic matter dynamics: The role of soil cation composition.Ecosystems, 10, 999-1018. |
15 | Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007). How strongly can forest management influence soil carbon sequestration?Geoderma, 137, 253-268. |
16 | Kelleher BP, Simpson AJ (2006). Humic substances in soils: Are they really chemically distinct?Environmental Science & Technology, 40, 4605-4611. |
17 | Laganière J, Paré D, Bergeron Y, Chen HYH (2012). The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality.Soil Biology & Biochemistry, 53, 18-27. |
18 | Li Q, Ma DM, Liu YJ, Liu C, Chen MC (2008). Study on soil organic carbon and nutrients under the different planta- tions.Chinese Journal of Soil Science, 39, 1034-1037. |
(in Chinese with English abstract) [李强, 马明东, 刘跃建, 刘闯, 陈暮初 (2008). 几种人工林土壤有机碳和养分研究. 土壤通报, 39, 1034-1037.] | |
19 | Li XF, Zhang Y, Niu LJ, Han SJ (2007). Litter decomposition processes in the pure birch (Betula platyphlla) forest and the birch and poplar (Populus davidiana) mixed forest.Acta Ecologica Sinica, 27, 1782-1790. |
(in Chinese with English abstract) [李雪峰, 张岩, 牛丽君, 韩士杰 (2007). 长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解. 生态学报, 27, 1782-1790.] | |
20 | Liu SR, Wang H, Luan JW (2011). A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China.Acta Ecologica Sinica, 31, 5437-5448. |
(in Chinese with English abstract) [刘世荣, 王晖, 栾军伟 (2011). 中国森林土壤碳储量与土壤碳过程研究进展. 生态学报, 31, 5437-5448.] | |
21 | Mareschal L, Bonnaud P, Turpault MP, Ranger J (2010). Impact of common European tree species on the chemical and physicochemical properties of fine earth: An unusual pattern.European Journal of Soil Science, 61, 14-23. |
22 | Mei L, Wang ZQ, Cheng YH, Han YZ, Zhang ZW (2008). Relationships between fine roots distribution and soil nitrogen availability in manchurian ash and korean larch plantation.Journal of Huazhong Agricultural University, 27, 117-121. |
(in Chinese with English abstract) [梅莉, 王政权, 程云环, 韩有志, 张卓文 (2008). 水曲柳和落叶松细根分布与土壤有效氮的关系. 华中农业大学学报, 27, 117-121.] | |
23 | Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment.Biogeochemistry, 111, 601-614. |
24 | Neirynck J, Mirtcheva S, Sioen G, Lust N (2000). Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil.Forest Ecology and Management, 133, 275-286. |
25 | Ovington JD (1954). Studies of the development of woodland conditions under different trees. II. The forest floor.Journal of Ecology, 42, 71-80. |
26 | Ovington JD (1956). Studies of the development of woodland conditions under different trees. IV. The ignition loss, water, carbon and nitrogen content of the mineral soil.Journal of Ecology, 44, 171-179. |
27 | Parry ML, Canzian OF, Palutikof JP, van der Linden P, Hanson CE (2007). Climate Change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK Impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 976. |
28 | Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B, Schumacher J, Gensior A (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach.Global Change Biology, 17, 2415-2427. |
29 | Rasse DP, Rumpel C, Dignac MF (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation.Plant and Soil, 269, 341-356. |
30 | Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species.Ecology Letters, 8, 811-818. |
31 | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008). Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology (Chinese Version), 32, 1217-1226. |
(in Chinese with English abstract) [师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008). 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32, 1217-1226.] | |
32 | Song HC, Chen LH, Lü CJ, Gai XG, Wang PH (2012). Distribution characteristics and mechanical properties of Betula platyphylla roots in North China mountainous area.Acta Agriculturae Zhejiangensis, 24, 693-698. |
(in Chinese with English abstract) [宋恒川, 陈丽华, 吕春娟, 盖小刚, 王萍花 (2012). 华北土石山区白桦根系分布特征及力学性能研究. 浙江农业学报, 24, 693-698.] | |
33 | Thomas GW (1996). Soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME eds. Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison. 475-490. |
34 | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C.Soil Biology & Biochemistry, 19, 703-707. |
35 | Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013). Do tree species influence soil carbon stocks in temperate and boreal forests?Forest Ecology and Management, 309, 4-18. |
36 | Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species.Forest Ecology and Management, 264, 185-196. |
37 | Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species.Forest Ecology and Management, 255, 35-48. |
38 | Wang H, Liu SR, Mo JM, Wang JX, Makeschin F, Wolff M (2010). Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China.Ecological Research, 25, 1071-1079. |
39 | Wellock ML, LaPerle CM, Kiely G (2011). What is the impact of afforestation on the carbon stocks of Irish mineral soils?Forest Ecology and Management, 262, 1589-1596. |
40 | Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems.Global Ecology and Biogeography, 22, 737-749. |
41 | Yang H, Lou AR, Gao YJ, Song HT (2007). Life history characteristics and spatial distribution of the Betula platyphylla population in the Dongling Mountain region, Beijing, China. Journal of Plant Ecology (Chinese Version), 31, 272-282. |
(in Chinese with English abstract) [杨慧, 娄安如, 高益军, 宋宏涛 (2007). 北京东灵山地区白桦种群生活史特征与空间分布格局. 植物生态学报, 31, 272-282.] | |
42 | Yang JY, Wang CK (2005). Soil carbon storage and flux of temperate forest ecosystems in northeastern China.Acta Ecologica Sinica, 25, 2875-2882. |
(in Chinese with English abstract) [杨金艳, 王传宽 (2005). 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 25, 2875-2882.] | |
43 | Zhu JJ, Kang HZ, Xu ML, Wu XY, Wang W (2007). Effects of ectomycorrhizal fungi on alleviating the decline of Pinus sylvestris var. mongolica plantations on Keerqin sandy land.Chinese Journal of Applied Ecology, 18, 2693-2698. |
(in Chinese with English abstract) [朱教君, 康宏樟, 许美玲, 吴祥云, 王巍 (2007). 外生菌根真菌对科尔沁沙地樟子松人工林衰退的影响. 应用生态学报, 18, 2693-2698.] |
[1] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[2] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[3] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[4] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[5] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[6] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[7] | RAN Song-Song, YU Zai-Peng, WAN Xiao-Hua, FU Yan-Rong, ZOU Bing-Zhang, WANG Si-Rong, HUANG Zhi-Qun. Effects of neighborhood tree species diversity on foliar nitrogen-phosphorus stoichiometry of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2023, 47(7): 932-942. |
[8] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[9] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[10] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[11] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[12] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[13] | YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng. Effects of tree species on soil microbial biomass carbon and nitrogen: a case study of common garden experiment [J]. Chin J Plant Ecol, 2022, 46(8): 882-889. |
[14] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[15] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn