Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (12): 1589-1601.DOI: 10.17521/cjpe.2024.0069 cstr: 32100.14.cjpe.2024.0069
• Research Articles • Previous Articles Next Articles
LAN Guang-Fei1,2, ZHANG Qiang1,2, CHEN Xiang-Biao1,2, CHEN Shi-Dong1,2, XIONG De-Cheng1,2, LIU Xiao-Fei1,2, YANG Zhi-Jie1,2,*(), YANG Yu-Sheng1,2
Received:
2024-03-11
Accepted:
2024-09-28
Online:
2024-12-20
Published:
2024-12-20
Contact:
YANG Zhi-Jie
Supported by:
LAN Guang-Fei, ZHANG Qiang, CHEN Xiang-Biao, CHEN Shi-Dong, XIONG De-Cheng, LIU Xiao-Fei, YANG Zhi-Jie, YANG Yu-Sheng. Seasonal dynamics of litterfall of a Castanopsis kawakamii evergreen broadleaf forest in mid-subtropical China and their influencing factors[J]. Chin J Plant Ecol, 2024, 48(12): 1589-1601.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0069
Fig. 1 Monthly mean air temperature and monthly precipitation from 2018 to 2022 in the Castanopsis kawakamii Provincial Nature Reserve in Sanming, Fujian. The small graph shows the 5-year monthly air temperature and month precipitation (mean ± SE).
年份 Year | 落叶 Leaf | 落枝 Branch | 落果 Fruit | 碎屑 Miscellany | 年总凋落量 Annual litterfall |
---|---|---|---|---|---|
2018 | 4 952.64 ± 121.53Aa (72.05) | 723.01 ± 22.74Ac (10.52) | 201.54 ± 13.80BCd (2.93) | 996.25 ± 30.62Ab (14.49) | 6 873.45 ± 173.69A |
2019 | 3 416.07 ± 118.90Ba (63.75) | 723.41 ± 19.59Ac (13.50) | 248.06 ± 16.09Bd (4.63) | 971.15 ± 30.01Ab (18.12) | 5 358.93 ± 166.24B |
2020 | 3 379.24 ± 43.53Ba (67.70) | 692.91 ± 16.04Ac (13.88) | 144.19 ± 6.04Dd (2.89) | 774.93 ± 17.56Cb (15.53) | 4 991.28 ± 71.38B |
2021 | 3 498.42 ± 116.98Ba (66.98) | 640.16 ± 34.57Bc (12.26) | 190.48 ± 7.30BCd (3.65) | 893.85 ± 21.53Bb (17.11) | 5 222.92 ± 158.72B |
2022 | 3 007.27 ± 66.33Ca (60.73) | 721.77 ± 24.05Ab (14.58) | 487.49 ± 56.76Ac (9.85) | 767.28 ± 29.35Cb (14.58) | 4 949.17 ± 115.20B |
平均 Mean | 3 650.73 ± 80.27 (66.63) | 700.25 ± 11.09 (12.78) | 254.35 ± 17.11 (4.64) | 880.69 ± 15.02 (16.07) | 5 479.15 ± 95.02 |
Table 1 Litterfall production (kg·hm-2·a-1, mean ± SE) and composition percentage (%, data in parentheses) in different years in the mid-subtropical Castanopsis kawakamii forest
年份 Year | 落叶 Leaf | 落枝 Branch | 落果 Fruit | 碎屑 Miscellany | 年总凋落量 Annual litterfall |
---|---|---|---|---|---|
2018 | 4 952.64 ± 121.53Aa (72.05) | 723.01 ± 22.74Ac (10.52) | 201.54 ± 13.80BCd (2.93) | 996.25 ± 30.62Ab (14.49) | 6 873.45 ± 173.69A |
2019 | 3 416.07 ± 118.90Ba (63.75) | 723.41 ± 19.59Ac (13.50) | 248.06 ± 16.09Bd (4.63) | 971.15 ± 30.01Ab (18.12) | 5 358.93 ± 166.24B |
2020 | 3 379.24 ± 43.53Ba (67.70) | 692.91 ± 16.04Ac (13.88) | 144.19 ± 6.04Dd (2.89) | 774.93 ± 17.56Cb (15.53) | 4 991.28 ± 71.38B |
2021 | 3 498.42 ± 116.98Ba (66.98) | 640.16 ± 34.57Bc (12.26) | 190.48 ± 7.30BCd (3.65) | 893.85 ± 21.53Bb (17.11) | 5 222.92 ± 158.72B |
2022 | 3 007.27 ± 66.33Ca (60.73) | 721.77 ± 24.05Ab (14.58) | 487.49 ± 56.76Ac (9.85) | 767.28 ± 29.35Cb (14.58) | 4 949.17 ± 115.20B |
平均 Mean | 3 650.73 ± 80.27 (66.63) | 700.25 ± 11.09 (12.78) | 254.35 ± 17.11 (4.64) | 880.69 ± 15.02 (16.07) | 5 479.15 ± 95.02 |
组分 Composition | 模型 Model | 均方误差 MSE | 残差标准误差 RSE | a1 | b1 | c1 | a2 | b2 | c2 | a3 | b3 | c3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
总量 Total | 三峰高斯模型* Trimodal Gaussian model* | 39 912.14 | 216.72 | 1 022.45 | 3.73 | 1.04 | 695.61 | 7.58 | 0.30 | 302.64 | 9.18 | 4.24 |
双峰高斯模型 Bimodal Gaussian model | 42 971.25 | 218.54 | 973.05 | 3.65 | 0.94 | 411.45 | 7.82 | 3.45 | ||||
落叶 Leaf | 三峰高斯模型 Trimodal Gaussian model | 19 857.71 | 151.78 | 819.82 | 3.67 | 0.98 | 43.46 | 7.99 | 0.18 | 237.63 | 8.28 | 2.89 |
双峰高斯模型* Bimodal Gaussian model* | 19 660.90 | 147.87 | 826.80 | 3.67 | 0.98 | 252.81 | 8.26 | 2.71 | ||||
落枝 Branch | 三峰高斯模型* Trimodal Gaussian model* | 1 206.75 | 37.68 | 115.99 | 4.88 | 1.19 | 147.19 | 7.68 | 0.55 | 38.89 | 12.46 | 2.41 |
双峰高斯模型 Bimodal Gaussian model | 1 584.38 | 41.96 | 54.91 | 4.98 | 0.17 | 92.78 | 6.53 | 2.81 | ||||
落果 Fruit | 三峰高斯模型 Trimodal Gaussian model | 2 656.80 | 55.91 | 76.71 | 3.00 | 0.21 | 48.65 | 8.27 | 0.31 | 142.43 | 11.60 | 0.40 |
双峰高斯模型* Bimodal Gaussian model* | 2 650.22 | 55.28 | 76.97 | 3.02 | 0.21 | 147.67 | 11.59 | 0.39 | ||||
碎屑 Miscellany | 三峰高斯模型* Trimodal Gaussian model* | 1 437.45 | 41.12 | 180.09 | 3.75 | 1.01 | 100.46 | 7.62 | 1.22 | 47.73 | 11.81 | 1.17 |
双峰高斯模型 Bimodal Gaussian model | 1 569.29 | 41.76 | 143.64 | 3.62 | 0.69 | 78.06 | 6.95 | 3.47 |
Table 2 Parameters of Gaussian model fitting for monthly litterfall production of each component in the mid-subtropical Castanopsis kawakamii forest
组分 Composition | 模型 Model | 均方误差 MSE | 残差标准误差 RSE | a1 | b1 | c1 | a2 | b2 | c2 | a3 | b3 | c3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
总量 Total | 三峰高斯模型* Trimodal Gaussian model* | 39 912.14 | 216.72 | 1 022.45 | 3.73 | 1.04 | 695.61 | 7.58 | 0.30 | 302.64 | 9.18 | 4.24 |
双峰高斯模型 Bimodal Gaussian model | 42 971.25 | 218.54 | 973.05 | 3.65 | 0.94 | 411.45 | 7.82 | 3.45 | ||||
落叶 Leaf | 三峰高斯模型 Trimodal Gaussian model | 19 857.71 | 151.78 | 819.82 | 3.67 | 0.98 | 43.46 | 7.99 | 0.18 | 237.63 | 8.28 | 2.89 |
双峰高斯模型* Bimodal Gaussian model* | 19 660.90 | 147.87 | 826.80 | 3.67 | 0.98 | 252.81 | 8.26 | 2.71 | ||||
落枝 Branch | 三峰高斯模型* Trimodal Gaussian model* | 1 206.75 | 37.68 | 115.99 | 4.88 | 1.19 | 147.19 | 7.68 | 0.55 | 38.89 | 12.46 | 2.41 |
双峰高斯模型 Bimodal Gaussian model | 1 584.38 | 41.96 | 54.91 | 4.98 | 0.17 | 92.78 | 6.53 | 2.81 | ||||
落果 Fruit | 三峰高斯模型 Trimodal Gaussian model | 2 656.80 | 55.91 | 76.71 | 3.00 | 0.21 | 48.65 | 8.27 | 0.31 | 142.43 | 11.60 | 0.40 |
双峰高斯模型* Bimodal Gaussian model* | 2 650.22 | 55.28 | 76.97 | 3.02 | 0.21 | 147.67 | 11.59 | 0.39 | ||||
碎屑 Miscellany | 三峰高斯模型* Trimodal Gaussian model* | 1 437.45 | 41.12 | 180.09 | 3.75 | 1.01 | 100.46 | 7.62 | 1.22 | 47.73 | 11.81 | 1.17 |
双峰高斯模型 Bimodal Gaussian model | 1 569.29 | 41.76 | 143.64 | 3.62 | 0.69 | 78.06 | 6.95 | 3.47 |
Fig. 2 Nonlinear fitting of the Gaussian curve model for total litterfall in the mid-subtropical Castanopsis kawakamii forest. The model was fitted using monthly litterfall production data from 2018 to 2022 (n = 60). The solid line represents the trimodal gaussian curve model, the dashed line represents the bimodal gaussian curve model, and the solid dots and bars indicate the five-year average and SE of monthly litterfall production.
Fig. 3 Seasonal dynamics of litterfall production from 2018 to 2022 in the mid-subtropical Castanopsis kawakamii forest (mean ± SE). A, Total litterfall production. B, Leaf litterfall production. C, Branches litterfall production. D, Fruits litterfall production. E, Miscellany litterfall production. Different lowercase letters in A-E indicated significant differences in litterfall production between different months (p < 0.05). ***, p < 0.001.
Fig. 4 Performance of the Random Forest regression model and the importance of selected variables in explaining seasonal dynamics of litterfall production in the mid-subtropical Castanopsis kawakamii forest. A, Comparison between actual litterfall production and model predicted litterfall production. B, Importance of predictor variables within the Random Forest model (mean ± SE), quantified by the percentage increase in mean squared error (incMSE). PBIAS, percent bias, assesses the percentage bias between the predicted and observed values, positive values indicate a systematic overestimation, while negative values indicate a systematic underestimation; rMSE, root mean squared error, measures the difference between the predicted and observed values, a lower rMSE indicates better model performance; Daytime PAR, photosynthetically active radiation, photosynthetically active radiation from 08:00 to 17:00. Monthly rainfall is represented as the total monthly amount, while other explanatory variables are represented as monthly averages.
Fig. 5 Random Forest regression model explains the importance of selected variables and presents partial dependence plots for understanding the seasonal dynamics of litterfall production in the mid-subtropical Castanopsis kawakamii forest. A-C, For the main peak of litterfall in March to May, the Random Forest model produced results with an R2 = 0.89, rMSE = 191.72, and PBIAS = 0.004. D-F, For the secondary peak in July to August, the model produced results with an R2 = 0.89, rMSE = 97.5, and PBIAS = 0.009. PAR, photosynthetically active radiation.
地区 Region | 森林优势种 Forest dominant species | 季节动态类型 Seasonal dynamic model | 第一次高峰 The first peak | 第二次高峰 The second peak | 第三次高峰 The third peak | 文献 Reference |
---|---|---|---|---|---|---|
福建三明 Sanming, Fujian | 格氏栲 Castanopsis kawakamii | 三峰型 Trimodal (n = 3) | 4月 April (2 561.0)* | 8月 August (756.1) | 10月 October (544.7) | Yang et al., |
木荚红豆 Ormosia xylocarpa | 双峰型 Bimodal (n = 3) | 3月 March (1 678.5)* | 8月 August (661.2) | 10月 October (561.3) | Yang et al., | |
米槠 Castanopsis carlesii | 双峰型 Bimodal (n = 1) | 4月 April (934.3) | 7月 July (1 058.3)* | Wu et al., | ||
福建建瓯万木林 Wanmulin, Jian’ou, Fujian | 木荷 Schima superba | 三峰型 Trimodal (n = 2) | 3月 March (1 059.6)* | 8月 August (344.8) | 10月 October (369.9) | Yang et al., |
细柄蕈树 Altingia gracilipes | 双峰型 Bimodal (n = 3) | 4月 April (1 382.7)* | 8月 August (468.1) | Guo et al., | ||
浙江宁波天童山 Tiantong Mountain, Ningbo, Zhejiang | 栲-木荷 Castanopsis fargesii - Schima superba | 三峰型 Trimodal (n = 2) | 5月 May (1 669.3) | 8月 August (1 853.7)* | 11月 November (916.3) | Deng et al., |
浙江舟山普陀山岛 Putuo Mountain Island, Zhoushan, Zhejiang | 青冈 Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 4月 April (954.4)* | 7月 July (561.4) | Song et al., | |
天竺桂-红楠 Cinnamomum japonicum - Machilus thunbergii | 三峰型 Trimodal (n = 1) | 5月 May (454.7) | 7月 July (842.1)* | 10月 October (342.5) | Song et al., | |
浙江衢州古田山 Gutian Mountain, Quzhou, Zhejiang | 甜槠 Castanopsis eyrei | 双峰型 Bimodal (n = 1) | 4月 April (1 550.5)* | 11月 November (1 523.0) | Wang et al., | |
广东肇庆鼎湖山 Dinghu Mountain, Zhaoqing, Guangdong | 锥栗-厚壳桂-木荷 Castanea henryi - Cryptocarya chinensis - Schima superba | 双峰型 Bimodal (n = 1) | 5月 May (1 084.8) | 8月 August (1 089.8)* | Guan et al., | |
湖北神农架 Shennongjia, Hubei | 宜昌润楠-青冈-川钓樟 Machilus ichangensis - Cyclobalanopsis glauca - Lindera pulcherrim | 三峰型 Trimodal (n = 2) | 4月 April (2 465.6)* | 8月 August (1 101.9) | 11月 November (1 336.1) | Liu et al., |
湖南长沙大山冲 Dashanchong, Changsha, Hunan | 石栎-青冈 Lithocarpus glaber - Cyclobalanopsis glauca | 三峰型 Trimodal (n = 1) | 3月 March (1 102.4)* | 6月 June (874.0) | 9月 September (1 000.0) | Guo et al., |
湖南怀化 Huaihua, Hunan | 栲-青冈-刨花润楠 Castanopsis fargesii - Cyclobalanopsis glauca - Machilus pauhoi | 三峰型 Trimodal (n = 11) | 5月 May (1 014.1)* | 11月 November (542.7) | Guan et al., | |
江西庐山 Lushan, Jiangxi | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 4月 April (740.8)* | 10月 October (538.0) | Qiu et al., | |
重庆北碚缙云山 Jinyun Mountain, Beibei, Chongqing | 栲 Castanopsis fargesii | 双峰型 Bimodal (n = 1) | 5月 May (368.6)* | 11月 November (134.6) | Wei & Zhao, | |
润楠 Machilus nanmu | 单峰型 Unimodal (n = 1) | 4月 April (159.4)* | Wei & Zhao, | |||
四川都江堰 Dujiangyan, Sichuan | 栲-青冈 Castanopsis fargesii - Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 5月 May (2 311.9)* | 10月 October (1 623.9) | Wang et al., | |
云南哀牢山 Ailao Mountain, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 11) | 4月 April (1 850.0)* | 11月 November (920.0) | Dai et al., | |
腾冲栲 Castanopsis wattii | 双峰型 Bimodal (n = 1) | 4月 April (1 668.8) | 11月 November (2 458.6) * | Zhou et al., | ||
云南新平磨盘山 Mopan Mountain, Xinping, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 5月 May (155.4)* | 8月 August (74.8) | Xing et al., |
Table 3 Seasonal dynamics model of litterfall production in subtropical regions across various locations of evergreen broadleaf forests
地区 Region | 森林优势种 Forest dominant species | 季节动态类型 Seasonal dynamic model | 第一次高峰 The first peak | 第二次高峰 The second peak | 第三次高峰 The third peak | 文献 Reference |
---|---|---|---|---|---|---|
福建三明 Sanming, Fujian | 格氏栲 Castanopsis kawakamii | 三峰型 Trimodal (n = 3) | 4月 April (2 561.0)* | 8月 August (756.1) | 10月 October (544.7) | Yang et al., |
木荚红豆 Ormosia xylocarpa | 双峰型 Bimodal (n = 3) | 3月 March (1 678.5)* | 8月 August (661.2) | 10月 October (561.3) | Yang et al., | |
米槠 Castanopsis carlesii | 双峰型 Bimodal (n = 1) | 4月 April (934.3) | 7月 July (1 058.3)* | Wu et al., | ||
福建建瓯万木林 Wanmulin, Jian’ou, Fujian | 木荷 Schima superba | 三峰型 Trimodal (n = 2) | 3月 March (1 059.6)* | 8月 August (344.8) | 10月 October (369.9) | Yang et al., |
细柄蕈树 Altingia gracilipes | 双峰型 Bimodal (n = 3) | 4月 April (1 382.7)* | 8月 August (468.1) | Guo et al., | ||
浙江宁波天童山 Tiantong Mountain, Ningbo, Zhejiang | 栲-木荷 Castanopsis fargesii - Schima superba | 三峰型 Trimodal (n = 2) | 5月 May (1 669.3) | 8月 August (1 853.7)* | 11月 November (916.3) | Deng et al., |
浙江舟山普陀山岛 Putuo Mountain Island, Zhoushan, Zhejiang | 青冈 Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 4月 April (954.4)* | 7月 July (561.4) | Song et al., | |
天竺桂-红楠 Cinnamomum japonicum - Machilus thunbergii | 三峰型 Trimodal (n = 1) | 5月 May (454.7) | 7月 July (842.1)* | 10月 October (342.5) | Song et al., | |
浙江衢州古田山 Gutian Mountain, Quzhou, Zhejiang | 甜槠 Castanopsis eyrei | 双峰型 Bimodal (n = 1) | 4月 April (1 550.5)* | 11月 November (1 523.0) | Wang et al., | |
广东肇庆鼎湖山 Dinghu Mountain, Zhaoqing, Guangdong | 锥栗-厚壳桂-木荷 Castanea henryi - Cryptocarya chinensis - Schima superba | 双峰型 Bimodal (n = 1) | 5月 May (1 084.8) | 8月 August (1 089.8)* | Guan et al., | |
湖北神农架 Shennongjia, Hubei | 宜昌润楠-青冈-川钓樟 Machilus ichangensis - Cyclobalanopsis glauca - Lindera pulcherrim | 三峰型 Trimodal (n = 2) | 4月 April (2 465.6)* | 8月 August (1 101.9) | 11月 November (1 336.1) | Liu et al., |
湖南长沙大山冲 Dashanchong, Changsha, Hunan | 石栎-青冈 Lithocarpus glaber - Cyclobalanopsis glauca | 三峰型 Trimodal (n = 1) | 3月 March (1 102.4)* | 6月 June (874.0) | 9月 September (1 000.0) | Guo et al., |
湖南怀化 Huaihua, Hunan | 栲-青冈-刨花润楠 Castanopsis fargesii - Cyclobalanopsis glauca - Machilus pauhoi | 三峰型 Trimodal (n = 11) | 5月 May (1 014.1)* | 11月 November (542.7) | Guan et al., | |
江西庐山 Lushan, Jiangxi | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 4月 April (740.8)* | 10月 October (538.0) | Qiu et al., | |
重庆北碚缙云山 Jinyun Mountain, Beibei, Chongqing | 栲 Castanopsis fargesii | 双峰型 Bimodal (n = 1) | 5月 May (368.6)* | 11月 November (134.6) | Wei & Zhao, | |
润楠 Machilus nanmu | 单峰型 Unimodal (n = 1) | 4月 April (159.4)* | Wei & Zhao, | |||
四川都江堰 Dujiangyan, Sichuan | 栲-青冈 Castanopsis fargesii - Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 5月 May (2 311.9)* | 10月 October (1 623.9) | Wang et al., | |
云南哀牢山 Ailao Mountain, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 11) | 4月 April (1 850.0)* | 11月 November (920.0) | Dai et al., | |
腾冲栲 Castanopsis wattii | 双峰型 Bimodal (n = 1) | 4月 April (1 668.8) | 11月 November (2 458.6) * | Zhou et al., | ||
云南新平磨盘山 Mopan Mountain, Xinping, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 5月 May (155.4)* | 8月 August (74.8) | Xing et al., |
[1] |
Asner GP, Alencar A (2010). Drought impacts on the Amazon forest: the remote sensing perspective. New Phytologist, 187, 569-578.
DOI PMID |
[2] | Chen TC, Wang SY, Huang WR, Yen MC (2004). Variation of the east Asian summer monsoon rainfall. Journal of Climate, 17, 744-762. |
[3] | Dai SY, Wei T, Tang J, Xu ZX, Gong HD (2023). Temporal changes in litterfall and nutrient cycling from 2005-2015 in an evergreen broad-leaved forest in the Ailao Mountains, China. Plants, 12, 1277. DOI: 10.3390/ plants12061277. |
[4] |
Dai YH, Gong FX, Yang XQ, Chen XZ, Su YX, Liu LY, Wu JP, Liu XD, Sun QL (2022). Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China. Journal of Plant Ecology, 15, 320-334.
DOI |
[5] | Deng XX, Wang ZC, Li C, Guo H, Jin KC (2017). Seasonal dynamics of the litter fall production of evergreen broadleaf forest and its relationships with meteorological factors at Tiantong of Zhejiang Province. Journal of Central South University of Forestry & Technology, 37(3), 73-78. |
[ 邓秀秀, 王忠诚, 李程, 郭灏, 金珂丞 (2017). 浙江天童常绿阔叶林凋落物量季节动态及其与气象因子的关系. 中南林业科技大学学报, 37(3), 73-78.] | |
[6] | Detto M, Wright SJ, Calderón O, Muller-Landau HC (2018). Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nature Communications, 9, 913. DOI: 10.1038/s41467-018-03306-9. |
[7] | Ding YH, Si D, Liu YJ, Wang ZY, Li Y, Zhao L, Song YF (2018). On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese Journal of Atmospheric Sciences, 42, 533-558. |
[ 丁一汇, 司东, 柳艳菊, 王遵娅, 李怡, 赵亮, 宋亚芳 (2018). 论东亚夏季风的特征、驱动力与年代际变化. 大气科学, 42, 533-558.] | |
[8] | Fox J, Weisberg S (2019). An R Companion to Applied Regression. 3rd ed. Sage Publications, New York. |
[9] | Gao W, Huang MG, Huang YR, Wu XS, Fang DL, Chen AP, Huang SD (2023). Dynamic characteristics of litterfall and carbon and nitrogen return in three forest types in subtropical China. Research of Soil and Water Conservation, 30(4), 146-153. |
[ 高伟, 黄茂根, 黄雍容, 吴兴盛, 方栋龙, 陈爱平, 黄石德 (2023). 亚热带3种森林凋落物量及碳氮归还动态变化. 水土保持研究, 30(4), 146-153.] | |
[10] | Greenwell BM (2017). pdp: an R package for constructing partial dependence plots. The R Journal, 9, 421-436. |
[11] | Guan LL, Zhou GY, Zhang DQ, Liu JX, Zhang QM (2004). Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan forest ecosystem research station. Acta Phytoecologica Sinica, 28, 449-456. |
[ 官丽莉, 周国逸, 张德强, 刘菊秀, 张倩媚 (2004). 鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究. 植物生态学报, 28, 449-456.]
DOI |
|
[12] | Guan X, Huang K, Yan SK, Wang SL (2021). A dataset of litter recovery amount and standing crop dynamics in middle subtropical broad-leaved evergreen forests (2005-2015). China Scientific Data, 6, 205-212. |
[ 关欣, 黄苛, 颜绍馗, 汪思龙 (2021). 2005-2015年中亚热带常绿阔叶林凋落物回收量和现存量月动态数据集. 中国科学数据, 6, 205-212.] | |
[13] | Guo J, Yu LH, Fang X, Xiang WH, Deng XW, Lu X (2015). Litter production and turnover in four types of subtropical forests in China. Acta Ecologica Sinica, 35, 4668-4677. |
[ 郭婧, 喻林华, 方晰, 项文化, 邓湘雯, 路翔 (2015). 中亚热带4种森林凋落物量、组成、动态及其周转期. 生态学报, 35, 4668-4677.] | |
[14] | Guo JF, Chen GS, Qian W, Yang SH, Yang YS, Zheng QR (2006). Litter production and nutrient return in two natural forests and a Cunninghamia lanceolata plantation in Wanmulin Nature Reserve. Acta Ecologica Sinica, 26, 4091-4098. |
[ 郭剑芬, 陈光水, 钱伟, 杨少红, 杨玉盛, 郑群瑞 (2006). 万木林自然保护区2种天然林及杉木人工林凋落量及养分归还. 生态学报, 26, 4091-4098.] | |
[15] | Huang SD, Huang YR, Gao W, Nie S, Cai B, Lin J (2020). Dynamics of litterfall and nutrient return in three typical forests of Wuyi Mountain along altitudinal gradient. Journal of Tropical and Subtropical Botany, 28, 394-402. |
[ 黄石德, 黄雍容, 高伟, 聂森, 蔡斌, 林捷 (2020). 沿海拔梯度武夷山3种典型森林凋落物及养分归还动态. 热带亚热带植物学报, 28, 394-402.] | |
[16] | Jackson MB, Ram PC (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227-241. |
[17] |
Kramer K, Leinonen I, Loustau D (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology, 44, 67-75.
PMID |
[18] | Li AG, Fan YX, Chen SL, Song HW, Lin CF, Yang YS (2022a). Soil warming did not enhance leaf litter decomposition in two subtropical forests. Soil Biology & Biochemistry, 170, 108716. DOI: 10.1016/j.soilbio.2022.108716. |
[19] | Li YN, Deng Y, Cheung HN, Zhou W, Yang S, Zhang HN (2022b). Amplifying subtropical hydrological transition over China in early summer tied to weakened mid-latitude synoptic disturbances. NPJ Climate and Atmospheric Science, 5, 40. DOI: 10.1038/s41612-022-00259-1. |
[20] | Liaw A, Wiener M (2002). Classification and regression by randomForest. R News, 2, 18-22. |
[21] | Lin TC, Hogan JA, Chang CT (2020). Tropical cyclone ecology: a scale-link perspective. Trends in Ecology & Evolution, 35, 594-604. |
[22] | Liu C, Westman CJ, Berg B, Kutsch W, Wang G, Man R, Ilvesniemi H (2004). Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105-114. |
[23] | Liu L, Shen GZ, Chen FQ, Luo L, Xie ZQ, Yu J (2012). Dynamic characteristics of litterfall and nutrient return of four typical forests along the altitudinal gradients in Mt. Shennongjia, China. Acta Ecologica Sinica, 32, 2142-2149. |
[ 刘蕾, 申国珍, 陈芳清, 罗璐, 谢宗强, 喻杰 (2012). 神农架海拔梯度上4种典型森林凋落物现存量及其养分循环动态. 生态学报, 32, 2142-2149.] | |
[24] | Liu L, Gong F, Chen X, Su Y, Fan L, Wu S, Yang X, Zhang J, Yuan W, Ciais P, Zhou C (2022). Bidirectional drought-related canopy dynamics across pantropical forests: a satellite-based statistical analysis. Remote Sensing in Ecology and Conservation, 8, 72-91. |
[25] | Liu XD, Feng YJ, Zhao XY, Cui ZJ, Liu PL, Chen XZ, Zhang QM, Liu JX (2024). Climatic drivers of litterfall production and its components in two subtropical forests in South China: a 14-year observation. Agricultural and Forest Meteorology, 344, 109798. DOI: 10.1016/j.agrformet.2023.109798. |
[26] | Loo YY, Billa L, Singh A (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6, 817-823. |
[27] | Lu XQ, Yu H, Ying M, Zhao BK, Zhang S, Lin LM, Bai LN, Wan RJ (2021). Western North Pacific tropical cyclone database created by the China meteorological administration. Advances in Atmospheric Sciences, 38, 690-699. |
[28] | Midi H, Bagheri A (2010). Robust multicollinearity diagnostic measure in collinear data set//Mastorakis NE, Mladenov V, Bojkovic Z. Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, USA. |
[29] | Morffi-Mestre H, Ángeles-Pérez G, Powers JS, Andrade JL, Huechacona Ruiz AH, May-Pat F, Chi-May F, Dupuy JM (2020). Multiple factors influence seasonal and interannual litterfall production in a tropical dry forest in Mexico. Forests, 11, 1241. DOI: 10.3390/f11121241. |
[30] | Portillo-Estrada M, Korhonen JFJ, Pihlatie M, Pumpanen J, Frumau AKF, Morillas L, Tosens T, Niinemets Ü (2013). Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests. Annals of Forest Science, 70, 367-379. |
[31] | Qiu LB, Xiao TQ, Bai TJ, Mo XY, Huang JH, Deng WP, Liu YQ (2023). Seasonal dynamics and influencing factors of litterfall production and carbon input in typical forest community types in Lushan Mountain, China. Forests, 14, 341. DOI: 10.3390/f14020341. |
[32] | Seber GAF, Wild CJ (2003). Nonlinear Regression. Wiley-Interscience, New York. |
[33] | Shen GR, Chen DM, Wu Y, Liu L, Liu CJ (2019). Spatial patterns and estimates of global forest litterfall. Ecosphere, 10, e02587. DOI: 10.1002/ecs2.2587. |
[34] | Shi JZ, Xu H, Lin MX, Li YD (2019). Dynamics of litterfall production in the tropical mountain rainforest of Jianfengling, Hainan Island, China. Plant Science Journal, 37, 593-601. |
[ 石佳竹, 许涵, 林明献, 李意德 (2019). 海南尖峰岭热带山地雨林凋落物产量及其动态. 植物科学学报, 37, 593-601.] | |
[35] | Song TC, Da LJ (2016). Evergreen broad-leaved forest of East Asia//Box EO. Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Springer, New York. 101-128. |
[36] |
Song YJ, Tian WB, Liu XY, Yin F, Cheng JY, Zhu DN, Arshad A, Yan ER (2016). Associations between litterfall dynamics and micro-climate in forests of Putuoshan Island, Zhejiang, China. Chinese Journal of Plant Ecology, 40, 1154-1163.
DOI |
[ 宋彦君, 田文斌, 刘翔宇, 尹芳, 程浚洋, 朱丹妮, Arshad A, 阎恩荣 (2016). 浙江普陀山岛森林凋落物动态与微气候的关联性. 植物生态学报, 40, 1154-1163.]
DOI |
|
[37] | Staelens J, Nachtergale L, de Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011). Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98. |
[38] | Sun M, Sung HM, Kim J, Lee JH, Shim S, Byun YH (2022). Present-day and future projection of East Asian summer monsoon in Coupled Model Intercomparison Project 6 simulations. PLoS ONE, 17, e0269267. DOI: 10.1371/journal.pone.0269267. |
[39] | Vitousek PM, Gerrish G, Turner DR, Walker LR, Mueller-Dombois D (1995). Litterfall and nutrient cycling in four Hawaiian montane rainforests. Journal of Tropical Ecology, 11, 189-203. |
[40] | Wan CH, Tao C, Yang XB, Huang J, Feng DD, Yang Q, Zhou WS (2014). Litter production of different types of forests in Hainan and its impact factors. Journal of Tropical Biology, 5, 153-161. |
[ 万春红, 陶楚, 杨小波, 黄瑾, 冯丹丹, 杨琦, 周文嵩 (2014). 海南岛不同森林类型凋落物产量及其影响因素. 热带生物学报, 5, 153-161.] | |
[41] | Wang JJ, Wang YJ, Lai LM, Zhao XC, Wang F, Shen GZ, Lai JS, Lu HB, Zhao CQ, Zheng YR (2013). Litter production and decomposition of different forest ecosystems and their relations to environmental factors in different climatic zones of mid and Eastern China. Acta Ecologica Sinica, 33, 4818-4825. |
[ 王健健, 王永吉, 来利明, 赵学春, 王飞, 申国珍, 赖江山, 鲁洪斌, 赵春强, 郑元润 (2013). 我国中东部不同气候带成熟林凋落物生产和分解及其与环境因子的关系. 生态学报, 33, 4818-4825.] | |
[42] | Wang ZH, Wang XH, Shen GC (2014). Effects of typhoon disturbance on the litter production in an evergreen broad-leaved forest in the Tiantong, Zhejiang. Journal of East China Normal University (Natural Science),(1), 79-89. |
[ 王樟华, 王希华, 沈国春 (2014). 台风干扰对天童常绿阔叶林凋落物量的影响. 华东师范大学学报(自然科学版), (1), 79-89.] | |
[43] | Wei YJ, Zhao L (2020). Seasonal dynamics of litterfall and C, N, and P stoichiometric characteristics of six tree species in an evergreen broad-leaved forest on Jinyun Mountains. Forest Research, 33(6), 73-80. |
[ 魏玉洁, 赵亮 (2020). 缙云山常绿阔叶林6个树种凋落叶量及其C、N、P化学计量学季节动态研究. 林业科学研究, 33(6), 73-80.] | |
[44] | Wu JJ, Yang ZJ, Weng FJ, Liu XF, Chen CQ, Lin WS, Wang XH, Chen T (2014). Comparison of soil respiration in natural Castanopsis carlesii forest and plantation forest. Environmental Science, 35, 2426-2432. |
[ 吴君君, 杨智杰, 翁发进, 刘小飞, 陈朝琪, 林伟盛, 王小红, 陈坦 (2014). 米槠天然林和人工林土壤呼吸的比较研究. 环境科学, 35, 2426-2432.] | |
[45] | Wu JP, Su YX, Chen XZ, Liu LY, Yang XQ, Gong FX, Zhang HO, Xiong X, Zhang DQ (2021). Leaf shedding of Pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation. Agricultural and Forest Meteorology, 311, 108691. DOI: 10.1016/j.agrformet.2021.108691. |
[46] | Wu QQ, Wang CK, Zhang QZ (2017). Inter- and intra-annual dynamics in litter production for six temperate forests. Acta Ecologica Sinica, 37, 760-769. |
[ 武启骞, 王传宽, 张全智 (2017). 6种温带森林凋落量年际及年内动态. 生态学报, 37, 760-769.] | |
[47] |
Xia LH, Wu HM, Liu M, Leng DS, Li TT (2014). Characteristic analysis of storm surges along Fujian coast associated with tropical cyclones. Journal of Tropical Oceanography, 33(3), 40-45.
DOI |
[ 夏丽花, 邬惠明, 刘铭, 冷典颂, 李婷婷 (2014). 热带气旋影响福建沿海风暴潮特征分析. 热带海洋学报, 33(3), 40-45.] | |
[48] | Xing JM, Wang KQ, Song YL, Zhang YJ, Zhang ZM, Pan TS (2021). Characteristics of litter return and nutrient dynamic change in four typical forests in the subalpine of central Yunnan Province. Journal of Central South University of Forestry & Technology, 41(8), 134-144. |
[ 邢进梅, 王克勤, 宋娅丽, 张雨鉴, 张转敏, 潘天森 (2021). 滇中亚高山4种典型林分凋落物归还及养分动态变化特征. 中南林业科技大学学报, 41(8), 134-144.] | |
[49] | Yan JH, Wang YP, Zhou GY, Zhang DQ (2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 12, 810-821. |
[50] | Yang C (2016). Dynamics of Litterfall of Evergreen Broad-leaved Forest on Jinyun Mountain. Master degree dissertation, Chongqing University, Chongqing. |
[ 杨超 (2016) 缙云山常绿阔叶林凋落物量及动态研究. 硕士学位论文, 重庆大学, 重庆.] | |
[51] | Yang YS, Guo JF, Chen GS, Xie JS, Cai LP, Lin P (2004). Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61, 465-476. |
[52] | Yang ZJ, Chen GS, Xie JS, Yang YS (2010). Litter fall production and carbon return in Cunninghamia lanceolata, Schima superba, and their mixed plantations. Chinese Journal of Applied Ecology, 21, 2235-2240. |
[ 杨智杰, 陈光水, 谢锦升, 杨玉盛 (2010). 杉木、木荷纯林及其混交林凋落物量和碳归还量. 应用生态学报, 21, 2235-2240.] | |
[53] | Yuan F, Huang L, Wei YJ, Qian SH, Zhao L, Yang YC (2018). Litterfall production and its relationships with climatic factors in Chinese natural forests. Chinese Journal of Ecology, 37, 3038-3046. |
[ 袁方, 黄力, 魏玉洁, 钱深华, 赵亮, 杨永川 (2018). 中国天然林凋落物量特征及其与气候因子的关系. 生态学杂志, 37, 3038-3046.] | |
[54] | Zhang HC, Yuan WP, Dong WJ, Liu SG (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240-247. |
[55] | Zhang JY, Wu LG, Ren FM, Cui XP (2013). Changes in tropical cyclone rainfall in China. Journal of the Meteorological Society of Japan Ser. II, 91, 585-595. |
[56] | Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY (2008). Litter fall production in relation to environmental factors in Northeast China’s forests. Journal of Plant Ecology (Chinese Version), 32, 1031-1040. |
[ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 (2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.] | |
[57] | Zhang YH, Chen J, Xu C, Xiong DC, Yang ZJ, Chen SD, Mao C (2023). Effects of warming on quantity and structure of litter-derived dissolved organic matter in subtropical natural Castanopsis kawakamii forests. Chinese Journal of Applied Ecology, 34, 946-954. |
[ 张宇辉, 陈娟, 胥超, 熊德成, 杨智杰, 陈仕东, 毛超 (2023). 增温对亚热带格氏栲天然林凋落物可溶性有机质数量和结构的影响. 应用生态学报, 34, 946-954.]
DOI |
|
[58] | Zhou L, Shalom ADD, Wu P, Li S, Jia Y, Ma X (2015). Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China. Journal of Forestry Research, 26, 79-89. |
[59] | Zhu Y, Yang YC, Zhou LH, Long YX, Huang L, Chen H (2023). Litterfall amount and dynamic characteristics of evergreen broad-leaved forest in Jinyun Mountain. Science of Soil and Water Conservation, 21(3), 110-118. |
[ 朱茵, 杨永川, 周礼华, 龙宇潇, 黄力, 陈华 (2023). 缙云山常绿阔叶林凋落物量及动态特征. 中国水土保持科学, 21(3), 110-118.] |
[1] | Jie Hao Diao Huajie Yuan Su shuaikai Wu Yang YangGao Wenjun Liang Huimin Niu Qianwen Wang Jie Chang Wang Ge Wenli Xu Ma-TengFei Kuan-Hu DONG Chang-Hui Wang. Precipitation regulates the response of saline-alkali grassland net primary productivity to nitrogen addition and mowing in the agro-pastoral zone [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-0. |
[2] | Meng-Yang ZHAO Hao-Ran ZHUANG De-Hao XU Guo-Rong MA Yong-Cheng MA Ke-Peng FENG. Hydrogen and oxygen stable isotope characteristics of maize fields in arid and semi-arid oasis irrigation areas with SPAC system: variability traits and influencing factors [J]. Chin J Plant Ecol, 2025, 49(2): 256-267. |
[3] | MA Xu-Han, HUANG Ju-Ying, YU Hai-Long, HAN Cui, LI Bing. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China [J]. Chin J Plant Ecol, 2024, 48(8): 1065-1077. |
[4] | ZHANG Fu-Chong, YU Ming-Han, ZHANG Jian-Ling, WANG Ping, DING Guo-Dong, HE Ying-Ying, SUN Hui-Yuan. Synergistic response mechanisms in xylem and phloem of Artemisia ordosica to changes in precipitation [J]. Chin J Plant Ecol, 2024, 48(7): 903-914. |
[5] | ZHANG Wen-Jin, SHE Wei-Wei, QIN Shu-Gao, QIAO Yan-Gui, ZHANG Yu-Qing. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of the dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[6] | XU Ming-Ze, ZHAO Hong-Xian, LI Cheng, LI Man-Le, TIAN Yun, LIU Peng, ZHA Tian-Shan. Characteristics of seasonal leaf trait network and its drivers in Artemisia ordosica in the Mau Us Sandy Land [J]. Chin J Plant Ecol, 2024, 48(12): 1650-1665. |
[7] | MA Bin, SHE Wei-Wei, QIN Huan, XUAN Rui-Zhi, SONG Chun-Yang, YUAN Xin-Yue, MIAO Chun, LIU Liang, FENG Wei, QIN Shu-Gao, ZHANG Yu-Qing. Effects of nitrogen and water addition on seed functional traits of Artemisia ordosica [J]. Chin J Plant Ecol, 2024, 48(12): 1637-1649. |
[8] | HUANG Li-Cheng, MO Xing-Guo. Response and resilience of net primary productivity of the Hai River Basin ecosystems under meteorological droughts [J]. Chin J Plant Ecol, 2024, 48(10): 1256-1273. |
[9] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[10] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[11] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[12] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[13] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[14] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[15] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn