Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (6): 551-557.DOI: 10.3724/SP.J.1258.2013.00056
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
YAN Zheng-Bing1,*,KIM Nam-Young1,*,HAN Ting-Shen2,FANG Jing-Yun1,HAN Wen-Xuan3,**()
Received:
2013-03-20
Accepted:
2013-04-09
Online:
2013-03-20
Published:
2013-06-05
Contact:
HAN Wen-Xuan
YAN Zheng-Bing,KIM Nam-Young,HAN Ting-Shen,FANG Jing-Yun,HAN Wen-Xuan. Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana[J]. Chin J Plant Ecol, 2013, 37(6): 551-557.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00056
基质N、P 水平 Substrate N, P level | 基质有效氮含量a Substrate available Na content (mg·kg-1) | 基质有效磷含量b Substrate available Pb content (mg·kg-1) | 基质N:P (质量比) Substrate N:P (mass ratio) |
---|---|---|---|
CK | 180.73 | 12.12 | 14.91 |
N1 | 205.73 | 12.12 | 16.97 |
N2 | 230.73 | 12.12 | 19.03 |
N3 | 280.73 | 12.12 | 23.15 |
N4 | 380.73 | 12.12 | 31.40 |
N5 | 580.73 | 12.12 | 47.90 |
N6 | 780.73 | 12.12 | 64.39 |
P1 | 180.73 | 22.12 | 8.17 |
P2 | 180.73 | 32.12 | 5.63 |
P3 | 180.73 | 52.12 | 3.47 |
P4 | 180.73 | 92.12 | 1.96 |
P5 | 180.73 | 172.12 | 1.05 |
P6 | 180.73 | 252.12 | 0.72 |
Table 1 N and P stoichiometric characteristics in substrate of control (CK) and each fertilization treatment
基质N、P 水平 Substrate N, P level | 基质有效氮含量a Substrate available Na content (mg·kg-1) | 基质有效磷含量b Substrate available Pb content (mg·kg-1) | 基质N:P (质量比) Substrate N:P (mass ratio) |
---|---|---|---|
CK | 180.73 | 12.12 | 14.91 |
N1 | 205.73 | 12.12 | 16.97 |
N2 | 230.73 | 12.12 | 19.03 |
N3 | 280.73 | 12.12 | 23.15 |
N4 | 380.73 | 12.12 | 31.40 |
N5 | 580.73 | 12.12 | 47.90 |
N6 | 780.73 | 12.12 | 64.39 |
P1 | 180.73 | 22.12 | 8.17 |
P2 | 180.73 | 32.12 | 5.63 |
P3 | 180.73 | 52.12 | 3.47 |
P4 | 180.73 | 92.12 | 1.96 |
P5 | 180.73 | 172.12 | 1.05 |
P6 | 180.73 | 252.12 | 0.72 |
Fig. 1 Effect of different N (P) fertilization treatment on leaf growth rate (G) of Arabidopsis thaliana (mean ± SE). A, nitrogen fertilization treatment. B, phosphorus fertilization treatment. Treatment see Table 1. Different letters indicate significant difference (p < 0.05) in leaf growth rate between different substrate N (P) levels.
Fig. 3 Relationship between Leaf N:P, C:P and leaf specific growth rate (u) of Arabidopsis thaliana. αRMA indicates the reduced major axis regression slope. A, N:P-u. B, C:P-u.
Fig. 4 Relationship between leaf N (P) content of Arabidopsis thaliana and substrate available N (P) content. H, regulation coefficient. A , leaf N content. B, leaf P content.
log Y vs. log X | 处理 Treatment | αRMA | 95% CI | n | R2 | p |
---|---|---|---|---|---|---|
logN vs. logC | 施氮肥 N-fertilization | 4.15 | [2.67, 6.47] | 21 | 0.091 | 0.183 |
施磷肥 P-fertilization | -3.76 | [-5.68, -2.49] | 21 | 0.217 | 0.033 | |
logP vs. logC | 施氮肥 N-fertilization | 8.92 | [5.62, 14.15] | 21 | 0.007 | 0.725 |
施磷肥 P-fertilization | -17.98 | [-22.28, -14.51] | 21 | 0.798 | <0.000 1 | |
logN vs. logP | 施氮肥 N-fertilization | 0.466a | [0.373, 0.581] | 21 | 0.785 | <0.000 1 |
施磷肥 P-fertilization | 0.209b | [0.141, 0.311] | 21 | 0.282 | 0.013 |
Table 2 Allometric relationship among leaf C, N, P content of Arabidopsis thaliana
log Y vs. log X | 处理 Treatment | αRMA | 95% CI | n | R2 | p |
---|---|---|---|---|---|---|
logN vs. logC | 施氮肥 N-fertilization | 4.15 | [2.67, 6.47] | 21 | 0.091 | 0.183 |
施磷肥 P-fertilization | -3.76 | [-5.68, -2.49] | 21 | 0.217 | 0.033 | |
logP vs. logC | 施氮肥 N-fertilization | 8.92 | [5.62, 14.15] | 21 | 0.007 | 0.725 |
施磷肥 P-fertilization | -17.98 | [-22.28, -14.51] | 21 | 0.798 | <0.000 1 | |
logN vs. logP | 施氮肥 N-fertilization | 0.466a | [0.373, 0.581] | 21 | 0.785 | <0.000 1 |
施磷肥 P-fertilization | 0.209b | [0.141, 0.311] | 21 | 0.282 | 0.013 |
[1] |
Acharya K, Kyle M, Elser JJ (2004). Biological stoichiometry of daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnology and Oceanography, 49, 656-665.
DOI URL |
[2] |
Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics, 39, 153-170.
DOI URL |
[3] |
Chapin FS III, Vitousek PM, van Cleve K (1986). The nature of nutrient limitation in plant communities. The American Naturalist, 127, 48-58.
DOI URL |
[4] | Dong M (1997). Survey, Observation and Analysis of Terrestrial Biocommunities. China Standard Press, Beijing. 154-160. (in Chinese) |
[ 董鸣 (1997). 陆地生物群落调查观测分析. 中国标准出版社, 北京. 154-160.] | |
[5] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[6] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N: P stoichiometry. BioScience, 46, 674-684.
DOI URL |
[7] |
Elser JJ, O’Brien WJ, Dobberfuhl DR, Dowling TE (2000). The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology, 13, 845-853.
DOI URL |
[8] | Falster DS, Warton DI, Wright IJ (2003). (S)MATR: Standardized Major Axis Tests and Routines. Version 1.0. http://www.bio.mq.edu.au/ecology/SMATR. Cited 25 Jan. 2013. |
[9] |
Güsewell S (2004). N: P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[10] |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI URL |
[11] |
Hessen DO, Jensen TC, Kyle M, Elser JJ (2007). RNA responses to N- and P-limitation: reciprocal regulation of stoichiometry and growth rate in Brachionus. Functional Ecology, 21, 956-962.
DOI URL |
[12] | Hessen DO, Lyche A (1991). Inter- and intraspecific variations in zooplankton element composition. Archiv für Hydrobiologie, 121, 355-363. |
[13] |
Karimi R, Folt CL (2006). Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecology Letters, 9, 1273-1283.
DOI URL PMID |
[14] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[15] |
Koojiman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
DOI URL |
[16] |
Loladze I, Elser JJ (2011). The origins of the Redfield nitrogen- to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14, 244-250.
URL PMID |
[17] |
Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
DOI URL |
[18] |
Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771.
DOI URL PMID |
[19] | Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998). Arabidopsis thaliana: a model plant for genome analysis. Science, 282, 662, 679-682. |
[20] | Niklas KJ (1994). Plant Allometry: the Scaling of form and Process. University of Chicago Press, Chicago. 7-34. |
[21] |
Niklas KJ (2006). Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Annals of Botany, 97, 155-163.
URL PMID |
[22] |
Niklas KJ, Cobb ED (2005). N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 92, 1256-1263.
DOI URL PMID |
[23] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[24] |
Rhee GY (1978). Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography, 23, 10-25.
DOI URL |
[25] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. 8. |
[26] |
Sterner RW, Schulz KL (1998). Zooplankton nutrition: recent progress and a reality check. Aquatic Ecology, 32, 261-279.
DOI URL |
[27] |
Watts T, Woods HA, Hargand S, Elser JJ, Markow TA (2006). Biological stoichiometry of growth in Drosophila melanogaster. Journal of Insect Physiology, 52, 187-193.
DOI URL PMID |
[28] | Wu DX, Wei WS, Song CY (2012). Quality Assurance and Quality Control of Data for Long-term Biological Observation in Terrestrial Ecosystems. China Environmental Science Press, Beijing. 109-113. (in Chinese) |
[ 吴冬秀, 韦文珊, 宋创业 (2012). 陆地生态系统生物观测数据: 质量保证与控制. 中国环境科学出版社, 北京 109-113.] | |
[29] | Yu Q (2009). Ecological Stoichiometric Study on Vascular Plants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botanty, Chinese Academy of Science, Beijing. 56-67. (in Chinese with English abstract). |
[ 庾强 (2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京. 56-67.] | |
[30] | Yu Q, Wu HH, He NP, Lü XT, Wang ZP, Elser JJ, Wu JG, Han XG (2012). Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass. PLoS ONE, 3(7), e32162. |
[31] | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 5369
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn