Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (6): 558-565.DOI: 10.3724/SP.J.1258.2013.00057
• Method and Technology • Previous Articles Next Articles
LIU Ju-Xiu,LI Yue-Lin,LIU Shi-Zhong,LI Yi-Yong,CHU Guo-Wei,MENG Ze,ZHANG De-Qiang()
Received:
2013-01-05
Accepted:
2013-04-07
Online:
2013-06-01
Published:
2013-06-05
Contact:
ZHANG De-Qiang
LIU Ju-Xiu, LI Yue-Lin, LIU Shi-Zhong, LI Yi-Yong, CHU Guo-Wei, MENG Ze, ZHANG De-Qiang. An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems[J]. Chin J Plant Ecol, 2013, 37(6): 558-565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00057
海拔 Altitude (m) | 开顶箱数 No. of open- top chambers | 模拟林型 Simulated forest type | 土壤类型 Soil type | 种植树种 Planted tree species | 增温方式 Temperature increasing way |
---|---|---|---|---|---|
600 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 对照 Control |
300 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 对照 Control | |
30 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 对照 Control | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 红外线增温 Temperature rise by infrared radiators |
Table 1 An introduction of experimental sites
海拔 Altitude (m) | 开顶箱数 No. of open- top chambers | 模拟林型 Simulated forest type | 土壤类型 Soil type | 种植树种 Planted tree species | 增温方式 Temperature increasing way |
---|---|---|---|---|---|
600 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 对照 Control |
300 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 对照 Control | |
30 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 对照 Control | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 红外线增温 Temperature rise by infrared radiators |
[1] | Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM (2004). Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment, 2, 315-322. |
[2] |
Beier C, Emmett B, Gundersen P, Tietema A, Peñuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems, 7, 583-597.
DOI URL |
[3] |
Bergh J, Linder S (1999). Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Global Change Biology, 5, 245-253.
DOI URL |
[4] |
Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316-1327.
DOI URL PMID |
[5] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
URL PMID |
[6] |
Dunne JA, Saleska SR, Fischer NL, Harte J (2004). Integrating experimental and gradient methods in ecological climate change research. Ecology, 85, 904-916.
DOI URL |
[7] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
URL PMID |
[8] |
Flanagan LB, Sharp EJ, Letts MG (2013). Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology, 173, 40-52.
DOI URL |
[9] |
Fukami T, Wardle DA (2005). Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B: Biological Sciences, 272, 2105-2115.
DOI URL PMID |
[10] | Gao Q, Zhang XS (1997). A simulation study of responses of the Northeast China Transect to elevated CO2 and climate change. Ecological Applications, 7, 470-483. |
[11] | Han XG, Li LH, Huang JH (1999). An Introduction to Biogeochemistry. Higher Education Press, Beijing. (in Chinese) |
[ 韩兴国, 李凌浩, 黄建辉 (1999). 生物地球化学概论. 高等教育出版社, 北京.] | |
[12] |
Hollister RD, Webber PJ (2000). Biotic validation of small open top chambers in a tundra ecosystem. Global Change Biology, 6, 835-842.
DOI URL |
[13] |
Huntington TG (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319, 83-95.
DOI URL |
[14] |
Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007). The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173, 463-480.
DOI URL PMID |
[15] | IPCC (Intergovernmental Panel on Climate Change) (2001). The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[16] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[17] |
Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J (2010). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91, 370-376.
DOI URL PMID |
[18] | Kimball BA (2005). Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 11, 2041-2056. |
[19] |
Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440-1451.
DOI URL |
[20] |
Li MH, Tien W, Tung CP (2009). Assessing the impact of climate change on the land hydrology in Taiwan. Paddy and Water Environment, 7, 283-292.
DOI URL |
[21] | Liu Y, Han SJ (2009). Factors controlling soil respiration in four types of forest of Changbai Mountains, China. Ecology and Environmental Sciences, 18, 1061-1065. (in Chinese with English abstract) |
[ 刘颖, 韩士杰 (2009). 长白山四种森林土壤呼吸的影响因素, 生态环境学报, 18, 1061-1065.] | |
[22] |
Liu JX, Huang WJ, Zhou GY, Zhang DQ, Liu SZ, Li YY (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biology, 19, 208-216.
DOI URL |
[23] |
Liu JX, Zhang DQ, Zhou GY, Duan HL (2012). Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated [CO2], N fertilization and canopy positions. Journal of Plant Ecology, 5, 376-390.
DOI URL |
[24] |
Luo YQ (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics, 38, 683-712.
DOI URL |
[25] |
Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
DOI URL PMID |
[26] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. (in Chinese with English abstract) |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[27] |
Noormets A, Chen JQ, Bridgham SD, Weltzin JF, Pastor J, Dewey B, LeMoine J (2004). The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems, 7, 573-582.
DOI URL |
[28] | Peters RL, Lovejoy TE (1994). Global Warming and Biological Diversity. Yale University Press, New Haven, USA. |
[29] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
URL PMID |
[30] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014, doi: 10.1029/2004GB002315. |
[31] |
Wang X, Nakatsubo T, Nakane K (2012). Impacts of elevated CO2 and temperature on soil respiration in warm temperate evergreen Quercus glauca stands: an open-top chamber experiment. Ecological Research, 27, 595-602.
DOI URL |
[32] |
Zhao M, Zhou GS (2005). Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 207, 295-313.
DOI URL |
[33] |
Zhou G, Wang Y, Wang S (2002). Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. Journal of Vegetation Science, 13, 361-368.
DOI URL |
[34] | Zhou GS, Wang YH, Xu ZZ, Zhou L, Jiang YL (2003). Advances of study on carbon cycles on the Northeast China transect (NECT). Progress in Natural Science, 13, 917-922. (in Chinese) |
[ 周广胜, 王玉辉, 许振柱, 周莉, 蒋延玲 (2003). 中国东北样带碳循环研究进展. 自然科学进展, 13, 917-922.] | |
[35] | Zhu L, Zhang WC (2005). Responses of water resources to climatic changes in the upper stream of the Hanjiang River Basin based on rainfall-runoff simulations. Resources Science, 27(2), 16-22. (in Chinese with English abstract) |
[ 朱利, 张万昌 (2005). 基于径流模拟的汉江上游区水资源对气候变化响应的研究. 资源科学, 27(2), 16-22.] |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | Chen-Hui CHANG Jiangling Zhu Wan-Qin YANG. A review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[4] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[5] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[6] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[7] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[8] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[9] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[10] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[11] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[12] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[13] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[14] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[15] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn