Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (9): 793-802.DOI: 10.3724/SP.J.1258.2013.00083
Special Issue: 植物功能性状
• Research Articles • Next Articles
LI Dong-Sheng1, SHI Zuo-Min1,*(), FENG Qiu-Hong2, LIU Feng3
Received:
2013-03-06
Accepted:
2013-06-28
Online:
2013-03-06
Published:
2013-09-02
Contact:
SHI Zuo-Min
LI Dong-Sheng, SHI Zuo-Min, FENG Qiu-Hong, LIU Feng. Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China[J]. Chin J Plant Ecol, 2013, 37(9): 793-802.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00083
地点 Site | 纬度 Latitude (N) | 经度 Longitude (E) | 树种 Species | 拉丁名 Latin name |
---|---|---|---|---|
吉林敦化市牡丹岭 Mudanling, Dunhua, Jilin | 43°21′ | 128°11′ | 蒙古栎 | Quercus mongolica |
辽宁营口市熊岳植物园 Xiongyue Botanical Garden, Yingkou, Liaoning | 40°40′ | 122°14′ | 蒙古栎 | Q. mongolica |
麻栎 | Q. acutissima | |||
河北兴隆县雾灵山 Wuling Mountain, Xinglong, Hebei | 40°26′ | 117°28′ | 蒙古栎 | Q. mongolica |
河北遵化市清东陵 Eastern Tombs of the Qing Dynasty, Zunhua, Hebei | 40°12′ | 117°58′ | 槲树 | Q. dentata |
麻栎 | Q. acutissima | |||
北京西山 Xishan Mountain, Beijing | 39°54′ | 116°10′ | 槲栎 | Q. aliena |
河北蔚县小五台山 Xiaowutai Mountain, Yu Xian, Hebei | 39°50′ | 114°26′ | 蒙古栎 | Q. mongolica |
辽东栎 | Q. liaotungensis | |||
河北秦皇岛北戴河 Beidaihe, Qinhuangdao, Hebei | 39°49′ | 119°29′ | 麻栎 | Q. acutissima |
山西五台县五台山 Wutai Mountain, Wutai, Shanxi | 38°43′ | 113°12′ | 粗齿蒙古栎 | Q. mongolica var. grosseserrata |
山西交城县关帝山 Guandi Mountain, Jiaocheng, Shanxi | 37°33′ | 112°08′ | 辽东栎 | Q. liaotungensis |
山西左权县太行山 Taihang Mountain, Zuoquan, Shanxi | 37°04′ | 113°21′ | 蒙古栎 | Q. mongolica |
栓皮栎 | Q. variabilis | |||
山西沁源县太岳山 Taiyue Mountain, Qinyuan, Shanxi | 36°30′ | 112°18′ | 蒙古栎 | Q. mongolica |
山西临汾市 Linfen, Shanxi | 36°04′ | 111°30′ | 辽东栎 | Q. liaotungensis |
山西陵川县 Lingchuan, Shanxi | 35°47′ | 113°16′ | 锐齿槲栎 | Q. alienavar.acuteserrata |
栓皮栎 | Q. variabilis | |||
槲树 | Q. dentata | |||
辽东栎 | Q. liaotungensis | |||
陕西韩城县黄龙山 Huanglong Mountain, Hancheng, Shaanxi | 35°28′ | 110°27′ | 辽东栎 | Q. liaotungensis |
山西垣曲县中条山 Zhongtiao Mountain, Yuanqu, Shanxi | 35°18′ | 111°38′ | 麻栎 | Q. acutissima |
河南焦作市云台山 Yuntai Mountain, Jiaozuo, Henan | 35°14′ | 113°25′ | 白栎 | Q. fabri |
山西夏县 Xia Xian, Shanxi | 35°07′ | 111°13′ | 槲栎 | Q. aliena |
河南济源 Jiyuan, Henan | 35°15′ | 112°07′ | 橿子栎 | Q. baronii |
山西永济市雪花山 Xuehua Mountain, Yongji, Shanxi | 34°55′ | 110°25′ | 辽东栎 | Q. liaotungensis |
陕西华阴市华山 Huashan Mountain, Huayin, Shaanxi | 34°35′ | 110°05′ | 橿子栎 | Q. baronii |
陕西眉县太白山 Taibai Mountain, Mei Xian, Shaanxi | 34°17′ | 107°45′ | 辽东栎 | Q. liaotungensis |
陕西西安市南五台山 Nanwutai Mountain, Xi’an, Shaanxi | 34°10′ | 108°56′ | 槲栎 | Q. aliena |
刺叶高山栎 | Q. spinosa | |||
橿子栎 | Q. baronii | |||
锐齿槲栎 | Q. alienavar.acuteserrata | |||
河南栾川县 Luanchuan, Henan | 33°45′ | 111°38′ | 橿子栎 | Q. baronii |
匙叶栎 | Q. dolicholepis |
Table 1 Sites and species of specimen sampling
地点 Site | 纬度 Latitude (N) | 经度 Longitude (E) | 树种 Species | 拉丁名 Latin name |
---|---|---|---|---|
吉林敦化市牡丹岭 Mudanling, Dunhua, Jilin | 43°21′ | 128°11′ | 蒙古栎 | Quercus mongolica |
辽宁营口市熊岳植物园 Xiongyue Botanical Garden, Yingkou, Liaoning | 40°40′ | 122°14′ | 蒙古栎 | Q. mongolica |
麻栎 | Q. acutissima | |||
河北兴隆县雾灵山 Wuling Mountain, Xinglong, Hebei | 40°26′ | 117°28′ | 蒙古栎 | Q. mongolica |
河北遵化市清东陵 Eastern Tombs of the Qing Dynasty, Zunhua, Hebei | 40°12′ | 117°58′ | 槲树 | Q. dentata |
麻栎 | Q. acutissima | |||
北京西山 Xishan Mountain, Beijing | 39°54′ | 116°10′ | 槲栎 | Q. aliena |
河北蔚县小五台山 Xiaowutai Mountain, Yu Xian, Hebei | 39°50′ | 114°26′ | 蒙古栎 | Q. mongolica |
辽东栎 | Q. liaotungensis | |||
河北秦皇岛北戴河 Beidaihe, Qinhuangdao, Hebei | 39°49′ | 119°29′ | 麻栎 | Q. acutissima |
山西五台县五台山 Wutai Mountain, Wutai, Shanxi | 38°43′ | 113°12′ | 粗齿蒙古栎 | Q. mongolica var. grosseserrata |
山西交城县关帝山 Guandi Mountain, Jiaocheng, Shanxi | 37°33′ | 112°08′ | 辽东栎 | Q. liaotungensis |
山西左权县太行山 Taihang Mountain, Zuoquan, Shanxi | 37°04′ | 113°21′ | 蒙古栎 | Q. mongolica |
栓皮栎 | Q. variabilis | |||
山西沁源县太岳山 Taiyue Mountain, Qinyuan, Shanxi | 36°30′ | 112°18′ | 蒙古栎 | Q. mongolica |
山西临汾市 Linfen, Shanxi | 36°04′ | 111°30′ | 辽东栎 | Q. liaotungensis |
山西陵川县 Lingchuan, Shanxi | 35°47′ | 113°16′ | 锐齿槲栎 | Q. alienavar.acuteserrata |
栓皮栎 | Q. variabilis | |||
槲树 | Q. dentata | |||
辽东栎 | Q. liaotungensis | |||
陕西韩城县黄龙山 Huanglong Mountain, Hancheng, Shaanxi | 35°28′ | 110°27′ | 辽东栎 | Q. liaotungensis |
山西垣曲县中条山 Zhongtiao Mountain, Yuanqu, Shanxi | 35°18′ | 111°38′ | 麻栎 | Q. acutissima |
河南焦作市云台山 Yuntai Mountain, Jiaozuo, Henan | 35°14′ | 113°25′ | 白栎 | Q. fabri |
山西夏县 Xia Xian, Shanxi | 35°07′ | 111°13′ | 槲栎 | Q. aliena |
河南济源 Jiyuan, Henan | 35°15′ | 112°07′ | 橿子栎 | Q. baronii |
山西永济市雪花山 Xuehua Mountain, Yongji, Shanxi | 34°55′ | 110°25′ | 辽东栎 | Q. liaotungensis |
陕西华阴市华山 Huashan Mountain, Huayin, Shaanxi | 34°35′ | 110°05′ | 橿子栎 | Q. baronii |
陕西眉县太白山 Taibai Mountain, Mei Xian, Shaanxi | 34°17′ | 107°45′ | 辽东栎 | Q. liaotungensis |
陕西西安市南五台山 Nanwutai Mountain, Xi’an, Shaanxi | 34°10′ | 108°56′ | 槲栎 | Q. aliena |
刺叶高山栎 | Q. spinosa | |||
橿子栎 | Q. baronii | |||
锐齿槲栎 | Q. alienavar.acuteserrata | |||
河南栾川县 Luanchuan, Henan | 33°45′ | 111°38′ | 橿子栎 | Q. baronii |
匙叶栎 | Q. dolicholepis |
变量 Variable | 定义 Definition |
---|---|
叶长 Leaf length (cm) | 叶片基部到叶尖的最长轴长度 Longest line from leaf base to leaf apex |
叶宽 Leaf width (cm) | 垂直于主脉的最大宽度 Longest line perpendicular to the major axis |
叶面积 Leaf area (cm2) | |
叶片周长 Leaf perimeter (cm) | |
叶柄长 Leaf petiole length (cm) | |
叶脉密度 Leaf vein density | 叶片侧脉数量/叶面积 Leaf lateral veins numbers / leaf area |
松散度 Compactness | 叶片周长2/叶片面积 Leaf perimeter2 / leaf area |
长宽比 Length-width ratio | 叶片长度/叶片宽度 Leaf length / leaf width |
形态指数 Shape factor | 4π×叶面积/叶片周长2 4π × leaf area / leaf perimeter2 |
Table 2 Definition of leaf physiognomic variables
变量 Variable | 定义 Definition |
---|---|
叶长 Leaf length (cm) | 叶片基部到叶尖的最长轴长度 Longest line from leaf base to leaf apex |
叶宽 Leaf width (cm) | 垂直于主脉的最大宽度 Longest line perpendicular to the major axis |
叶面积 Leaf area (cm2) | |
叶片周长 Leaf perimeter (cm) | |
叶柄长 Leaf petiole length (cm) | |
叶脉密度 Leaf vein density | 叶片侧脉数量/叶面积 Leaf lateral veins numbers / leaf area |
松散度 Compactness | 叶片周长2/叶片面积 Leaf perimeter2 / leaf area |
长宽比 Length-width ratio | 叶片长度/叶片宽度 Leaf length / leaf width |
形态指数 Shape factor | 4π×叶面积/叶片周长2 4π × leaf area / leaf perimeter2 |
气候因子 Climate factor | 最小值 Minimum | 最大值 Maximum | 平均值 Mean |
---|---|---|---|
年平均气温 Annual mean air temperature (℃) | 3.30 | 14.80 | 9.05 |
平均年降水量 Mean annual precipitation (mm) | 408.00 | 985.00 | 696.50 |
平均年日照时数 Mean annual sunlight (h) | 1 646.10 | 3 032.00 | 2 474.05 |
Table 3 Variation ranges of climate factor
气候因子 Climate factor | 最小值 Minimum | 最大值 Maximum | 平均值 Mean |
---|---|---|---|
年平均气温 Annual mean air temperature (℃) | 3.30 | 14.80 | 9.05 |
平均年降水量 Mean annual precipitation (mm) | 408.00 | 985.00 | 696.50 |
平均年日照时数 Mean annual sunlight (h) | 1 646.10 | 3 032.00 | 2 474.05 |
叶片形态性状 Leaf morphological trait | 年平均气温 Annual mean air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 平均年日照时数 Mean annual sunlight (h) | |||||
---|---|---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 显著性Significance | 相关系数 Correlation coefficient | 显著性Significance | 相关系数 Correlation coefficient | 显著性 Significance | |||
Log叶面积 Log leaf area (cm2) | -0.590 | 0.000 | -0.303 | 0.051 | 0.527 | 0.000 | ||
Log叶柄长 Log leaf petiole length (cm) | 0.012 | 0.938 | -0.028 | 0.862 | 0.138 | 0.384 | ||
Log叶脉密度 Log leaf vein density | 0.527 | 0.000 | 0.360 | 0.019 | -0.495 | 0.001 | ||
Log松散度 Log compactness | -0.532 | 0.000 | -0.263 | 0.092 | 0.478 | 0.001 | ||
Log长宽比 Log length-width ratio | 0.078 | 0.621 | 0.122 | 0.442 | 0.129 | 0.415 | ||
Log形态指数 Log shape factor | 0.537 | 0.000 | 0.261 | 0.096 | -0.483 | 0.001 |
Table 4 Relationships between leaf morphological traits of Quercus trees and climate factors
叶片形态性状 Leaf morphological trait | 年平均气温 Annual mean air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 平均年日照时数 Mean annual sunlight (h) | |||||
---|---|---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 显著性Significance | 相关系数 Correlation coefficient | 显著性Significance | 相关系数 Correlation coefficient | 显著性 Significance | |||
Log叶面积 Log leaf area (cm2) | -0.590 | 0.000 | -0.303 | 0.051 | 0.527 | 0.000 | ||
Log叶柄长 Log leaf petiole length (cm) | 0.012 | 0.938 | -0.028 | 0.862 | 0.138 | 0.384 | ||
Log叶脉密度 Log leaf vein density | 0.527 | 0.000 | 0.360 | 0.019 | -0.495 | 0.001 | ||
Log松散度 Log compactness | -0.532 | 0.000 | -0.263 | 0.092 | 0.478 | 0.001 | ||
Log长宽比 Log length-width ratio | 0.078 | 0.621 | 0.122 | 0.442 | 0.129 | 0.415 | ||
Log形态指数 Log shape factor | 0.537 | 0.000 | 0.261 | 0.096 | -0.483 | 0.001 |
Fig. 1 Relationships between leaf morphological traits of Quercus species and annual mean air temperature (MAT). SMA, slope for standardized major axis.
叶片形态性状 Leaf morphological trait | 系数 Coefficient | Log叶面积 Log leaf area (cm2) | Log叶柄长 Log leaf petiole length (cm) | Log叶脉密度 Log leaf vein density | Log松散度 Log compactness | Log长宽比 Log length- width ratio | Log形态指数 Log shape factor |
---|---|---|---|---|---|---|---|
Log叶面积 Log leaf area (cm2) | 相关系数 Correlation coefficient | 1.000 | |||||
显著性 Significance | 0.000 | ||||||
Log叶柄长 Log leaf petiole length (cm) | 相关系数 Correlation coefficient | 0.318 | 1.000 | ||||
显著性 Significance | 0.040 | 0.000 | |||||
Log叶脉密度 Log leaf vein density | 相关系数 Correlation coefficient | -0.931 | -0.134 | 1.000 | |||
显著性 Significance | 0.000 | 0.397 | 0.000 | ||||
Log松散度 Log compactness | 相关系数 Correlation coefficient | 0.537 | -0.047 | -0.512 | 1.000 | ||
显著性 Significance | 0.000 | 0.765 | 0.001 | 0.000 | |||
Log长宽比 Log length-width ratio | 相关系数 Correlation coefficient | -0.138 | 0.351 | 0.398 | 0.111 | 1.000 | |
显著性 Significance | 0.384 | 0.023 | 0.009 | 0.485 | 0.000 | ||
Log形态指数 Log shape factor | 相关系数 Correlation coefficient | -0.546 | 0.058 | 0.524 | -0.998 | -0.102 | 1.000 |
显著性 Significance | 0.000 | 0.717 | 0.000 | 0.000 | 0.519 | 0.000 |
Table 5 Relationships among leaf morphological traits of Quercus species
叶片形态性状 Leaf morphological trait | 系数 Coefficient | Log叶面积 Log leaf area (cm2) | Log叶柄长 Log leaf petiole length (cm) | Log叶脉密度 Log leaf vein density | Log松散度 Log compactness | Log长宽比 Log length- width ratio | Log形态指数 Log shape factor |
---|---|---|---|---|---|---|---|
Log叶面积 Log leaf area (cm2) | 相关系数 Correlation coefficient | 1.000 | |||||
显著性 Significance | 0.000 | ||||||
Log叶柄长 Log leaf petiole length (cm) | 相关系数 Correlation coefficient | 0.318 | 1.000 | ||||
显著性 Significance | 0.040 | 0.000 | |||||
Log叶脉密度 Log leaf vein density | 相关系数 Correlation coefficient | -0.931 | -0.134 | 1.000 | |||
显著性 Significance | 0.000 | 0.397 | 0.000 | ||||
Log松散度 Log compactness | 相关系数 Correlation coefficient | 0.537 | -0.047 | -0.512 | 1.000 | ||
显著性 Significance | 0.000 | 0.765 | 0.001 | 0.000 | |||
Log长宽比 Log length-width ratio | 相关系数 Correlation coefficient | -0.138 | 0.351 | 0.398 | 0.111 | 1.000 | |
显著性 Significance | 0.384 | 0.023 | 0.009 | 0.485 | 0.000 | ||
Log形态指数 Log shape factor | 相关系数 Correlation coefficient | -0.546 | 0.058 | 0.524 | -0.998 | -0.102 | 1.000 |
显著性 Significance | 0.000 | 0.717 | 0.000 | 0.000 | 0.519 | 0.000 |
[1] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
URL PMID |
[2] | Adams JM, Green WA, Zhang Y (2008). Leaf margins and temperature in the North American flora: recalibrating the paleoclimatic thermometer. Global and Planetary Change, 60, 523-534. |
[3] | Aizen PB, Ezcurra C (2008). Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Global Ecology and Biogeography, 17, 164-174. |
[4] | Barboni D, Harrison SP, Bartlein PG, Jalut G, New M, Prentice IC, Sanchez-Go MF, Spessa A, Davis B, Stevenson AC (2004). Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. Journal of Vegetation Science, 15, 635-646. |
[5] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[6] | Falster DS, Warton DI, Wright IJ (2006). SMATR: Standardised Major Axis Tests & Routines. Version 2.0, Copyright 2006. http://www.bio.mq.edu.au/ecology/SMATR/index.html. Cited 12 Oct. 2008. |
[7] | Feild TS, Sage TL, Czerniak C, Iles WJD (2005). Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant, Cell & Environment, 28, 1179-1190. |
[8] | Feng QH, Shi ZM, Dong LL, Liu SR (2010). Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 34, 619-627. (in Chinese with English abstract) |
[冯秋红, 史作民, 董莉莉, 刘世荣 (2010). 南北样带暖温带区栎属树种功能性状间的关系及其对气象因子的响应. 植物生态学报, 34, 619-627.] | |
[9] | Hodgson JG, Wilson PJ, Hunt R, Grime J, Thompson K (1999). Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85, 282-294. |
[10] | Huang WJ, Li ZJ, Yang ZP, Bai GZ (2010). The structural traits of Populus euphratica heteromorphic leaves and their correlations. Acta Ecologica Sinica, 30, 4636-4642. (in Chinese with English abstract) |
[黄文娟, 李志军, 杨赵平, 白冠章 (2010). 胡杨异形叶结构型性状及其相互关系. 生态学报, 30, 4636-4642.] | |
[11] | Huff PM, Wilf P, Auumah EJ (2003). Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios, 18, 266-274. |
[12] | Kowalski EA, Dilcher DL (2003). Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 100, 167-170. |
[13] | Li DS, Shi ZM, Liu SR, Geng LJ (2012). Relationships between chemical compositions of Quercus species seeds and climatic factors in temperate zone of NSTEC. Acta Ecologica Sinica, 32, 7857-7865. (in Chinese with English abstract) |
[李东胜, 史作民, 刘世荣, 耿丽君 (2012). 南北样带温带区栎属树种种子化学组成与气候因子的关系. 生态学报, 32, 7857-7865.] | |
[14] | Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98. (in Chinese with English abstract) |
[李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.] | |
[15] | Liu MS, Hong BG (1998). The distribution of Fagaceae in China and its relationship with climatic and geographic characters. Acta Phytoecologica Sinica, 22, 41-50. (in Chinese with English abstract) |
[刘茂松, 洪必恭 (1998). 中国壳斗科的地理分布及气候条件的关系. 植物生态学报, 22, 41-50. | |
[16] |
Meng TT, Ni J, Harrison SP (2009). Plant morphometric traits and climate gradients in northern China: a meta-analysis using quadrat and flora data. Annals of Botany, 104, 1217-1229.
URL PMID |
[17] | Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008). Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 154, 625-635. |
[18] | Niinemets Ü (1998). Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs. Plant Ecology, 134, 1-11. |
[19] | Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303. |
[20] | Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104. |
[21] | Niklas KL (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31. |
[22] | Peppe DJ, Royer DL, Wilf P, Kowalski E (2010). Quantification of large uncertainties in fossil leaf paleoaltimetry. Tectonics, 29, TC3015, doi: 10.1029/2009TC002549. |
[23] | Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97. |
[24] | Poorter L, Rozendaal DMA (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46. |
[25] |
Reich PB, Wright IJ, Lusk CH (2007). Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecological Applications, 17, 1982-1988.
URL PMID |
[26] |
Royer DL, Kooyman RM, Little SA, Wilf P (2009). Ecology of leaf teeth: a multi-site analysis from an Australian subtropical rainforest. American Journal of Botany, 96, 738-750.
URL PMID |
[27] | Royer DL, McElwain JC, Adams JM, Wilf P (2008). Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist, 179, 808-817. |
[28] | Royer DL, Wilf P (2006). Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 167, 11-18. |
[29] | Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005). Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 92, 1141-1151. |
[30] | Traiser C, Klotz S, Uhl D, Mosbrugger V (2005). Environmental signals from leaves—a physiognomic analysis of European vegetation. New Phytologist, 166, 465-484. |
[31] | Vogel S (2009). Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist, 183, 13-26. |
[32] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
[33] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Pooter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421. |
[34] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom1 PK, Gulias J, Hikosakal K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[35] | Xu F, Guo WH, Xu WH, Wei YH, Wang RQ (2009). Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science, 19, 1789-1798. |
[36] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica, 28, 844-852. (in Chinese with English abstract) |
[张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.] |
[1] | FENG Shan-Shan, HUANG Chun-Hui, TANG Meng-Yun, JIANG Wei-Xin, BAI Tian-Dao. Geographical variation of needles phenotypic and anatomic traits between populations of Pinus yunnanensis var. tenuifolia and its environmental interpretation [J]. Chin J Plant Ecol, 2023, 47(8): 1116-1130. |
[2] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[3] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[4] | MOU Wen-Bo, XU Dang-Hui, WANG Xie-Jun, JING Wen-Mao, ZHANG Rui-Ying, GU Yu-Ling, YAO Guang-Qian, QI Shi-Hua, ZHANG Long, GOU Ya-Fei. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China [J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431. |
[5] | LIU Bing-Bing, WEI Jian-Xin, HU Tian-Yu, YANG Qiu-Li, LIU Xiao-Qiang, WU Fa-Yun, SU Yan-Jun, GUO Qing-Hua. Validation and uncertainty analysis of satellite remote sensing products for monitoring China’s forest ecosystems—Based on massive UAV LiDAR data [J]. Chin J Plant Ecol, 2022, 46(10): 1305-1316. |
[6] | LIU Chao, LI Ping, WU Yun-Tao, PAN Sheng-Nan, JIA Zhou, LIU Ling-Li. Estimation of grassland aboveground biomass using digital photograph and canopy structure measurements [J]. Chin J Plant Ecol, 2022, 46(10): 1280-1288. |
[7] | Yang ZHANG, Ming-Tai AN, Jian-Yong WU, Feng LIU, Wei WANG. Geographical distribution pattern and dominant climatic factors of the Paphiopedilum Subgen. Brachypetalum in China [J]. Chin J Plant Ecol, 2022, 46(1): 40-50. |
[8] | ZHANG Zi-Yan, JIN Guang-Ze, LIU Zhi-Li. Effects of needle age on leaf traits and their correlations of Pinus koraiensis across different regions [J]. Chin J Plant Ecol, 2021, 45(3): 253-264. |
[9] | XU Guang-Lai, LI Ai-Juan, XU Xiao-Hua, YANG Xian-Cheng, YANG Qiang-Qiang. NDVIdynamics and driving climatic factors in the Protected Zones for Ecological Functions in China [J]. Chin J Plant Ecol, 2021, 45(3): 213-223. |
[10] | HUANG Song-Yu, JIA Xin, ZHENG Jia-Jia, YANG Rui-Zhi, MU Yu, YUAN He-Di. Characteristics and influencing factors of Bowen ratio variation in typical terrestrial ecosystems in China [J]. Chin J Plant Ecol, 2021, 45(2): 119-130. |
[11] | SHI Jiao-Xing, XU Ming-Shan, FANG Xiao-Chen, ZHENG Li-Ting, ZHANG Yu, BAO Di-Feng, YANG An-Na, YAN En-Rong. Latitudinal variability and driving factors of functional diversity in Pinus thunbergiicommunities across sea-islands in Eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 163-173. |
[12] | WANG Zhao-Peng, ZHANG Tong-Wen, YUAN Yu-Jiang, ZHANG Rui-Bo, YU Shu-Long, LIU Rui, Shirenna JIAHAN, GUO Dong, WANG Yong-Hui. Comparative analysis of growth characteristics and climate responses in four coniferous tree species of southern Luoxiao Mountains [J]. Chin J Plant Ecol, 2021, 45(12): 1303-1313. |
[13] | QIN Tian-Zi, REN An-Zhi, FAN Xiao-Wen, GAO Yu-Bao. Effects of endophyte fungal species and host plant genotype on the leaf shape and leaf area of endophyte-grass symbionts [J]. Chin J Plant Ecol, 2020, 44(6): 654-660. |
[14] | LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696. |
[15] | YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn