Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (7): 776-784.DOI: 10.3724/SP.J.1258.2014.00073
• Research Articles • Previous Articles Next Articles
YANG Chun1, TAN Tai-Long2,*(), YU Jia-Ling1, LIAO Qiong1, ZHANG Xiao-Long1, ZHANG Zhen-Hua1, SONG Hai-Xing1,*(), GUAN Chun-Yun2
Received:
2014-01-06
Accepted:
2014-03-20
Online:
2014-01-06
Published:
2014-07-10
Contact:
TAN Tai-Long,SONG Hai-Xing
YANG Chun, TAN Tai-Long, YU Jia-Ling, LIAO Qiong, ZHANG Xiao-Long, ZHANG Zhen-Hua, SONG Hai-Xing, GUAN Chun-Yun. Effects of atmospheric CO2 enrichment on phloem sap composition and root nitrogen accumulation in oilseed rape[J]. Chin J Plant Ecol, 2014, 38(7): 776-784.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00073
品种 Variety | CO2浓度 CO2 concentration | 供氮水平 N application level | 处理代码 Designated in the text |
---|---|---|---|
欧洲油菜‘814’ Brassica napus ‘814’ | 自然CO2浓度 Normal CO2 concentration | 低氮 Without N application | A |
常氮 Normal N application | N-A | ||
高CO2浓度 Elevated CO2 concentration | 低氮 Without N application | CA | |
常氮 Normal N application | CN-A | ||
欧洲油菜‘湘油15’ B. napus ‘Xiangyou 15’ | 自然CO2浓度 Normal CO2 concentration | 低氮 Without N application | B |
常氮 Normal N application | N-B | ||
高CO2浓度 Elevated CO2 concentration | 低氮 Without N application | CB | |
常氮 Normal N application | CN-B |
Table 1 Experimental design
品种 Variety | CO2浓度 CO2 concentration | 供氮水平 N application level | 处理代码 Designated in the text |
---|---|---|---|
欧洲油菜‘814’ Brassica napus ‘814’ | 自然CO2浓度 Normal CO2 concentration | 低氮 Without N application | A |
常氮 Normal N application | N-A | ||
高CO2浓度 Elevated CO2 concentration | 低氮 Without N application | CA | |
常氮 Normal N application | CN-A | ||
欧洲油菜‘湘油15’ B. napus ‘Xiangyou 15’ | 自然CO2浓度 Normal CO2 concentration | 低氮 Without N application | B |
常氮 Normal N application | N-B | ||
高CO2浓度 Elevated CO2 concentration | 低氮 Without N application | CB | |
常氮 Normal N application | CN-B |
处理 Treatment | 苗期 Seedling stage | 抽薹期 Bolting stage | 盛花期 Flowering stage | 角果发育期 Silique stage |
---|---|---|---|---|
A | 3.24 ± 0.01gG | 7.29 ± 0.24eE | 9.48 ± 0.26eE | 9.31 ± 0.48eE |
CA | 5.14 ± 0.09bB | 10.50 ± 0.21dD | 11.38 ± 0.46dD | 12.03 ± 0.33cCD |
N-A | 3.86 ± 0.09eE | 16.28 ± 0.82bB | 18.13 ± 0.26bB | 10.92 ± 0.74dD |
CN-A | 4.18 ± 0.07dD | 17.62 ± 0.62aA | 19.70 ± 0.59aA | 14.51 ± 0.56bB |
B | 3.53 ± 0.03fF | 7.67 ± 0.06eE | 8.96 ± 0.11eE | 8.94 ± 0.30eE |
CB | 5.99 ± 0.08aA | 13.29 ± 0.48cC | 11.59 ± 0.32dD | 12.63 ± 0.71cC |
N-B | 3.96 ± 0.21eDE | 10.05 ± 0.46dD | 14.27 ± 0.28cC | 12.02 ± 0.32cCD |
CN-B | 4.52 ± 0.04cC | 17.64 ± 0.21aA | 19.35 ± 0.36aA | 16.55 ± 0.379aA |
Table 2 Dry mass of root of oilseed rape in different level of CO2 concentration and nitrogen concentration (g) (mean ± SD)
处理 Treatment | 苗期 Seedling stage | 抽薹期 Bolting stage | 盛花期 Flowering stage | 角果发育期 Silique stage |
---|---|---|---|---|
A | 3.24 ± 0.01gG | 7.29 ± 0.24eE | 9.48 ± 0.26eE | 9.31 ± 0.48eE |
CA | 5.14 ± 0.09bB | 10.50 ± 0.21dD | 11.38 ± 0.46dD | 12.03 ± 0.33cCD |
N-A | 3.86 ± 0.09eE | 16.28 ± 0.82bB | 18.13 ± 0.26bB | 10.92 ± 0.74dD |
CN-A | 4.18 ± 0.07dD | 17.62 ± 0.62aA | 19.70 ± 0.59aA | 14.51 ± 0.56bB |
B | 3.53 ± 0.03fF | 7.67 ± 0.06eE | 8.96 ± 0.11eE | 8.94 ± 0.30eE |
CB | 5.99 ± 0.08aA | 13.29 ± 0.48cC | 11.59 ± 0.32dD | 12.63 ± 0.71cC |
N-B | 3.96 ± 0.21eDE | 10.05 ± 0.46dD | 14.27 ± 0.28cC | 12.02 ± 0.32cCD |
CN-B | 4.52 ± 0.04cC | 17.64 ± 0.21aA | 19.35 ± 0.36aA | 16.55 ± 0.379aA |
处理 Treatment | 苗期 Seedling stage | 抽薹期 Bolting stage | 盛花期 Flowering stage | 角果发育期 Silique stage |
---|---|---|---|---|
A | 0.036 ± 0.002fF | 0.121 ± 0.005fF | 0.089 ± 0.002dD | 0.052 ± 0.004eEF |
CA | 0.047 ± 0.000eE | 0.124 ± 0.000fF | 0.081 ± 0.000dD | 0.061 ± 0.004dDE |
N-A | 0.058 ± 0.001cC | 0.286 ± 0.011cC | 0.283 ± 0.007bB | 0.102 ± 0.003cC |
CN-A | 0.071 ± 0.002bB | 0.336 ± 0.013bB | 0.316 ± 0.025aA | 0.147 ± 0.007bB |
B | 0.036 ± 0.001fF | 0.125 ± 0.005fF | 0.077 ± 0.001dD | 0.044 ± 0.003eF |
CB | 0.054 ± 0.002dD | 0.183 ± 0.001eE | 0.093 ± 0.002dD | 0.064 ± 0.004dD |
N-B | 0.069 ± 0.001bB | 0.215 ± 0.004dD | 0.238 ± 0.001cC | 0.105 ± 0.005cC |
CN-B | 0.084 ± 0.003aA | 0.375 ± 0.010aA | 0.330 ± 0.015aA | 0.188 ± 0.005aA |
Table 3 Nitrogen accumulation of root of oilseed rape in different level of CO2 concentration and nitrogen concentration (g·plant-1) (mean ± SD)
处理 Treatment | 苗期 Seedling stage | 抽薹期 Bolting stage | 盛花期 Flowering stage | 角果发育期 Silique stage |
---|---|---|---|---|
A | 0.036 ± 0.002fF | 0.121 ± 0.005fF | 0.089 ± 0.002dD | 0.052 ± 0.004eEF |
CA | 0.047 ± 0.000eE | 0.124 ± 0.000fF | 0.081 ± 0.000dD | 0.061 ± 0.004dDE |
N-A | 0.058 ± 0.001cC | 0.286 ± 0.011cC | 0.283 ± 0.007bB | 0.102 ± 0.003cC |
CN-A | 0.071 ± 0.002bB | 0.336 ± 0.013bB | 0.316 ± 0.025aA | 0.147 ± 0.007bB |
B | 0.036 ± 0.001fF | 0.125 ± 0.005fF | 0.077 ± 0.001dD | 0.044 ± 0.003eF |
CB | 0.054 ± 0.002dD | 0.183 ± 0.001eE | 0.093 ± 0.002dD | 0.064 ± 0.004dD |
N-B | 0.069 ± 0.001bB | 0.215 ± 0.004dD | 0.238 ± 0.001cC | 0.105 ± 0.005cC |
CN-B | 0.084 ± 0.003aA | 0.375 ± 0.010aA | 0.330 ± 0.015aA | 0.188 ± 0.005aA |
游离氨基酸 Free amino acid | 根系干物质量 Dry biomass of roots | 根系氮素累积量 Root N accumulation | |
---|---|---|---|
可溶性糖 Soluble sugar | 0.65** | 0.69** | 0.82** |
游离氨基酸 Free amino acid | - | 0.48** | 0.71** |
根部干物质量 Dry biomass of roots | - | - | 0.84** |
Table 4 Correlation coefficients among indices
游离氨基酸 Free amino acid | 根系干物质量 Dry biomass of roots | 根系氮素累积量 Root N accumulation | |
---|---|---|---|
可溶性糖 Soluble sugar | 0.65** | 0.69** | 0.82** |
游离氨基酸 Free amino acid | - | 0.48** | 0.71** |
根部干物质量 Dry biomass of roots | - | - | 0.84** |
[1] | Bao SD (1999). Soil Analysis. China Agriculture Press, Beijing. |
[鲍士旦 (1999). 土壤农化分析. 中国农业出版社, 北京.] | |
[2] |
Bloom AJ, Burger M, Rubio Asensio JS, Cousins AB (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science, 328, 899-903.
URL PMID |
[3] | Delaire M, Frak E, Sigogne M, Adam B, Beaujard F, Le Roux X (2005). Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees. Tree Physiology, 25, 229-235. |
[4] | Ericsson T (1995). Growth and shoot: root allocation of seedlings in relation to nutrient availability. Plant & Soil, 168, 205-214. |
[5] | Fangmeier A, de Temmerman L, Black C, Persson K, Vorne V (2002). Effects of elevated CO2 and ozone on nutrient concentrations and nutrient uptake of potatoes. European Journal of Agronomy, 17, 353-368. |
[6] | Guo JP, Gao SH (2005). Impacts of CO2 enrichment and soil drought on C, N accumulation and distribution in Stipa baicalensis. Journal of Soil and Water Conservation, 19, 118-121. (in Chinese with English abstract) |
[郭建平, 高素华 (2005). 高CO2浓度和土壤干旱对贝加尔针茅C、N积累和分配的影响. 水土保持学报, 19, 118-121.] | |
[7] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.. |
[8] | Ji CR, Li SQ, Wu WM, Wei YM, Zhang XC, Shao MA (2005). Effect of N fertilization on N translocation of different winter wheat cultivars during grain filling period in sub-humid farmland ecologic system. Plant Nutrition and Fertilizer Science, 11, 569-577. (in Chinese with English abstract) |
[吉春容, 李世清, 伍维模, 魏益民, 张兴昌, 邵明安 (2005). 半湿润农田生态条件下施氮对不同冬小麦品种氮素转移的影响. 植物营养与肥料学报, 11, 569-577.] | |
[9] | Kimball BA (1983). Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal, 75, 779-788. |
[10] | Kimball BA, Kobayashi K, Bindi M (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77, 293-368. |
[11] | Kuzyakov Y, Cheng W (2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. |
[12] | Lam SK, Chen D, Norton R, Armstrong R (2012a). Nitrogen demand and the recovery of 15N-labelled fertilizer in wheat grown under elevated carbon dioxide in southern Australia. Nutrient Cycling in Agroecosystems, 92(2), 133-144. |
[13] | Lam SK, Han X, Lin E, Norton R, Chen D (2012b). Does elevated atmospheric carbon dioxide concentration increase wheat nitrogen demand and recovery of nitrogen applied at stem elongation? Ecosystem and Environment, 155, 142-146. |
[14] | Li YT, Mi GH, Chen FJ, Lao XR, Zhang FS (2001). Genotypic difference of nitrogen recycling between root and shoot of maize seedlings. Acta Phytophysiologica Sinica, 27, 226-230. (in Chinese with English abstract) |
[李燕婷, 米国华, 陈范骏, 劳秀荣, 张福锁 (2001). 玉米幼苗地上部/根间氮的循环及其基因型差异. 植物生理学报, 27, 226-230.] | |
[15] | Li YY, Xie GX, Jiang LH, He YL, Sun GG (2012). Effects of pig manure type of organic fertilizer on composition and quality of phloem sap of radish. Hunan Agricultural Sciences, (7), 65-67. (in Chinese with English abstract) |
[李益洋, 谢桂先, 姜利红, 何云龙, 孙改格 (2012). 猪粪型有机肥对萝卜韧皮部汁液组分与品质的影响. 湖南农业科学, (7), 65-67.] | |
[16] |
Liao Y, Chen GY, Zhang HB, Cai SQ, Zhu JG, Han Y, Liu G, Xu DQ (2002). Response and acclimation of photosynthesis in rice leaves to free-air CO2 enrichment (FACE). Chinese Journal of Applied Ecology, 13, 1205-1209. (in Chinese with English abstract)
URL PMID |
[廖轶, 陈根云, 张海波, 蔡时青, 朱建国, 韩勇, 刘钢, 许大全 (2002). 水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应. 应用生态学报, 13, 1205-1209.]
PMID |
|
[17] |
Long SP, Ainsworth EA, Rogers A, Ort DR (2004). Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55, 591-628.
URL PMID |
[18] | Lu SF, Song YR (1999). Molecular mechanisms of phloem transport and defense. Chinese Bulletin of Botany, 16, 113-121. (in Chinese with English abstract) |
[卢善发, 宋艳茹 (1999). 韧皮部运输和防御作用的分子机理. 植物学通报, 16, 113-121.] | |
[19] | Nakano H, Makino A, Mae T (1997). The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology, 115, 191-198. |
[20] | Qiao YZ, Wang KY, Zhang YB (2007). Effects of elevated CO2 on the growth and nutrient contents of Betula albosinensis seedlings with two planting densities. Chinese Journal of Ecology, 26, 301-306. (in Chinese with English abstract) |
[乔匀周, 王开运, 张远彬 (2007). CO2浓度升高对两个种植密度下红桦生长和养分含量的影响. 生态学杂志, 26, 301-306.] | |
[21] | Seneweera S, Makino A, Hirotsu N, Norton R, Suzuki YJ (2011). New insight into photosynthetic acclimation to elevated CO2: the role of leaf nitrogen and ribulose-1, 5-bisphosphate carboxylase/oxygenase content in rice leaves. Environmental and Experimental Botany, 71(2), 128-136. |
[22] | Song XL, Liu Q, Song HX, Guan CY, Rong XM, Zeng DW, Yang Y, Guo CM (2011). Effects of different planting densities and fertilizer levels on soluble sugar and free amino acids content and rapeseed yield. Journal of Hunan Agricultural University (Natural Sciences), 37, 12-16. (in Chinese with English abstract) |
[宋小林, 刘强, 宋海星, 官春云, 荣湘民, 曾德武, 杨勇, 郭春铭 (2011). 种植密度和施肥水平对油菜茎叶可溶性糖和游离氨基酸及籽粒产量的影响. 湖南农业大学学报(自然科学版), 37, 12-16.] | |
[23] | Sun XC, Hu CX, Tan QL, Wei WX, Wang YH (2002). Effects of molybdenum application on contents of free amino acid, soluble sugar and protein of winter wheat at different growth stages. Journal of Huazhong Agricultural University, 21, 40-43. (in Chinese with English abstract) |
[孙学成, 胡承孝, 谭启玲, 魏文学, 王运华 (2002). 施用钼肥对冬小麦游离氨基酸、可溶性蛋白质和糖含量的影响. 华中农业大学学报, 21, 40-43.] | |
[24] | Tingey DT, Mckane RB, Olszyk DM, Johnson MK, Paul T (2003). Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 9, 1038-1050. |
[25] | van Bel AJE (2003). The phloem, a miracle of ingenuity. Plant, Cell & Environment, 26, 125-149. |
[26] | Xu YB, Shen YF, Li SQ (2011). Effect of elevated CO2 concentration and nitrogen application on translocation of dry matter and nitrogen restored before anthesis in winter wheat. Acta Agronomica Sinica, 37, 1465-1474. (in Chinese with English abstract) |
[许育彬, 沈玉芳, 李世清 (2011). CO2浓度升高和施氮对冬小麦花前贮存碳氮转运的影响. 作物学报, 37, 1465-1474.] | |
[27] | Xu ZZ, Zhou GS (2007). Relationship between carbon and nitrogen and environmental regulation in plants under global change from molecule to ecosystem. Journal of Plant Ecology (Chinese Version), 31, 738-747. (in Chinese with English abstract) |
[许振柱, 周广胜 (2007). 全球变化下植物的碳氮关系及其环境调节研究进展: 从分子到生态系统. 植物生态学报, 31, 738-747.] | |
[28] | Yang LX, Huang JY, Yang HJ, Dong GC, Liu G, Zhu JG, Wang YL (2006). Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice ( Oryza sativa L.). Field Crop, 98, 12-19. |
[29] | Yang LX, Wang YX, Zhu JG, Hasegawa T, Wang YL (2010). What have we learned from 10 years of free-air CO2 enrichment (FACE) experiments on rice? Growth and development. Acta Ecologica Sinica, 30, 1573-1585. (in Chinese with English abstract) |
[杨连新, 王云霞, 朱建国, Hasegawa T, 王余龙 (2010). 开放式空气中CO2浓度增高(FACE)对水稻生长和发育的影响. 生态学报, 30, 1573-1585.] | |
[30] | Yong ZH, Chen GY, Zhang DY, Chen Y, Chen J, Zhu JG, Xu DQ (2006). Is photosynthetic acclimation to free-air CO2 enrichment (FACE) related to a strong competition for the assimilatory power between carbon assimilation and nitrogen assimilation in rice leaf? Photosynthetica, 45, 85-91. |
[31] | Yu CY, Du ST, Xing CH, Lin XY, Zhang YS (2006). Effects of CO2 concentration on the growth and nutrient uptake of tomato seedlings. Journal of Zhejiang University (Agriculture & Life Sciences), 32, 307-312. (in Chinese with English abstract) |
[于承艳, 都韶婷, 邢承华, 林咸永, 章永松 (2006). CO2浓度对番茄幼苗生长及养分吸收的影响. 浙江大学学报(农业与生命科学版), 32, 307-312.] | |
[32] | Zhang XC, Yu XF, Ma YF, Shangguan ZP (2011). The responses of photosynthetic energy use in wheat flag leaves to nitrogen application rates and light density under elevated atmospheric CO2 concentration. Acta Ecologica Sinica, 31, 1046-1057. (in Chinese with English abstract) |
[张绪成, 于显枫, 马一凡, 上官周平 (2011). 高大气CO2浓度下小麦旗叶光合能量利用对氮素和光强的响应. 生态学报, 31, 1046-1057.] | |
[33] | Zou CQ, Guo SW, Zhang FS, Yang ZF (2002). Effects of different nitrogen forms and phloem-scalding on iron transport in phloem of maize plants. Plant Nutrition and Fertilizer Science, 8, 419-423. (in Chinese with English abstract) |
[邹春琴, 郭世伟, 张福锁, 杨志福 (2002). 氮素形态和韧皮部烫伤对玉米韧皮部铁运输的影响. 植物营养与肥料学报, 8, 419-423.] | |
[34] | Zou Q (2000). Plant Physiological and Biochemical Experiments. 3rd edn. China Agriculture Press, Beijing. |
[邹琦 (2000). 植物生理生化实验指导. 第三版. 中国农业出版社, 北京.] |
[1] | Huiying Cai Lanhui Li Yang Lin Yatao Liang Guang Yang Long Sun. Responses of nonstructural carbohydrates in Betula platyphylla leaves and fine roots to time since fire [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 722-734. |
[3] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[4] | HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China [J]. Chin J Plant Ecol, 2021, 45(12): 1350-1364. |
[5] | Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland [J]. Chin J Plant Ecol, 2016, 40(8): 788-797. |
[6] | Yan-Ting ZHANG, Jian-Jun ZHANG, Jian-Xiu WANG, Xiao-Hong WU, Bao-Qiang CHEN, Peng-Fei LI, Zhi-Zhen WANG. Effects of long-term flooding on respiratory metabolism of Taxodium ‘Zhongshansha 118’ seedlings [J]. Chin J Plant Ecol, 2016, 40(6): 585-593. |
[7] | WANG Biao,JIANG Yuan,WANG Ming-Chang,DONG Man-Yu,ZHANG Yi-Ping. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China [J]. Chin J Plan Ecolo, 2015, 39(7): 746-752. |
[8] | YU Li-Min, WANG Chuan-Kuan, WANG Xing-Chang. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China [J]. Chin J Plant Ecol, 2011, 35(12): 1245-1255. |
[9] | MAI Bo-Ru, ZHENG You-Fei, WU Rong-Jun, LIANG Jun, LIU Xia. Effects of simulated sulfur-rich, nitric-rich and mixed acid rain on the physiology, growth and yield of rape (Brassica napus) [J]. Chin J Plant Ecol, 2010, 34(4): 427-437. |
[10] | ZHANG Xu-Cheng, YU Xian-Feng, GAO Shi-Ming. Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration [J]. Chin J Plant Ecol, 2010, 34(10): 1196-1203. |
[11] | JU Chang-Hua, TIAN Yong-Chao, ZHU Yan, YAO Xia, CAO Wei-Xing. RELATIONSHIP BETWEEN DERIVATIVE SPECTRA AND PHOTOSYNTHETIC ORGAN AREA IN RAPESEED (BRASSICA NAPUS) [J]. Chin J Plant Ecol, 2008, 32(3): 664-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn