Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (4): 427-437.DOI: 10.3773/j.issn.1005-264x.2010.04.008
• Research Articles • Previous Articles Next Articles
MAI Bo-Ru1, ZHENG You-Fei1,2,*(), WU Rong-Jun1, LIANG Jun1,3, LIU Xia4
Received:
2009-07-14
Accepted:
2009-12-26
Online:
2010-07-14
Published:
2010-04-01
Contact:
ZHENG You-Fei
MAI Bo-Ru, ZHENG You-Fei, WU Rong-Jun, LIANG Jun, LIU Xia. Effects of simulated sulfur-rich, nitric-rich and mixed acid rain on the physiology, growth and yield of rape (Brassica napus)[J]. Chin J Plant Ecol, 2010, 34(4): 427-437.
pH | 有机质 OM (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) | 速效磷 AP (mg·kg-1) | 交换性铝 EAl (mg·kg-1) | 交换性锰 EMn (mg·kg-1) | 阳离子交换量 CEC (cmol(+)·kg-1) |
---|---|---|---|---|---|---|---|---|
5.54 | 57.02 | 2.03 | 0.89 | 18.58 | 13.44 | 10.36 | 16.45 | 24.12 |
Table 1 Physical and chemical properties of the tested soil
pH | 有机质 OM (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) | 速效磷 AP (mg·kg-1) | 交换性铝 EAl (mg·kg-1) | 交换性锰 EMn (mg·kg-1) | 阳离子交换量 CEC (cmol(+)·kg-1) |
---|---|---|---|---|---|---|---|---|
5.54 | 57.02 | 2.03 | 0.89 | 18.58 | 13.44 | 10.36 | 16.45 | 24.12 |
pH | SO42- | NO3- | Cl- | F- | Ca2+ | NH4+ | Mg2+ | K+ | Na+ |
---|---|---|---|---|---|---|---|---|---|
1.5 | 206.84 | 41.37 | 78.54 | 0.71 | 24.36 | 16.63 | 4.31 | 4.15 | 1.60 |
3.1 | 150.10 | 30.02 | 38.00 | 0.35 | 11.43 | 8.04 | 2.08 | 2.01 | 0.77 |
4.1 | 91.79 | 18.36 | 28.73 | 0.26 | 8.65 | 6.08 | 1.58 | 1.52 | 0.58 |
5.1 | 35.68 | 7.14 | 23.10 | 0.21 | 5.86 | 5.50 | 1.52 | 1.45 | 0.47 |
7.0 (CK) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Table 2 pH and main ion concentrations of the mixed simulated acid rain (μmol·L-1)
pH | SO42- | NO3- | Cl- | F- | Ca2+ | NH4+ | Mg2+ | K+ | Na+ |
---|---|---|---|---|---|---|---|---|---|
1.5 | 206.84 | 41.37 | 78.54 | 0.71 | 24.36 | 16.63 | 4.31 | 4.15 | 1.60 |
3.1 | 150.10 | 30.02 | 38.00 | 0.35 | 11.43 | 8.04 | 2.08 | 2.01 | 0.77 |
4.1 | 91.79 | 18.36 | 28.73 | 0.26 | 8.65 | 6.08 | 1.58 | 1.52 | 0.58 |
5.1 | 35.68 | 7.14 | 23.10 | 0.21 | 5.86 | 5.50 | 1.52 | 1.45 | 0.47 |
7.0 (CK) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fig. 1 Effects of SAR, MAR and NAR on the leaf cell membrane permeability of Brassica napus. Error bars show SD. Different small letters indicate that NAR, MAR and SAR treatments are significantly different at p < 0.05. * and ** indicate values that differ significantly from control (pH = 7.0) at p < 0.05 and p < 0.01, respectively. MAR, mixed acid rain; NAR, nitric acid rain; SAR, sulphur acid rain.
酸雨处理 Acid rain treatment | 叶绿素a Chl a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | 叶绿素a/叶绿素b Chl a/Chl b |
---|---|---|---|---|
硫酸型模拟酸雨 Sulphur-rich simulated acid rain | ||||
pH = 1.5 | 0.678 ± 0.040cC | 0.297 ± 0.005cC | 0.975 ± 0.045cC | 2.279 |
pH = 3.1 | 0.903 ± 0.039bB | 0.328 ± 0.010bB | 1.231 ± 0.047bB | 2.753 |
pH = 4.1 | 0.966 ± 0.047abAB | 0.350 ± 0.008aA | 1.316 ± 0.054abAB | 2.757 |
pH = 5.1 | 1.028 ± 0.045aA | 0.356 ± 0.004aA | 1.384 ± 0.042aA | 2.891 |
pH = 7.0 (CK) | 1.039 ± 0.091aA | 0.361 ± 0.016aA | 1.400 ± 0.090aA | 2.878 |
混合型模拟酸雨 Mixed simulated acid rain | ||||
pH = 1.5 | 0.594 ± 0.034dC | 0.286 ± 0.018cC | 0.880 ± 0.046dC | 2.074 |
pH = 3.1 | 0.854 ± 0.40cB | 0.318 ± 0.013bB | 1.172 ± 0.053cB | 2.689 |
pH = 4.1 | 0.951 ± 0.032bA | 0.348 ± 0.014aA | 1.299 ± 0.039bA | 2.729 |
pH = 5.1 | 1.001 ± 0.035abA | 0.352 ± 0.014aA | 1.353 ± 0.048abA | 2.840 |
pH = 7.0 (CK) | 1.039 ± 0.075aA | 0.361 ± 0.006aA | 1.400 ± 0.072aA | 2.878 |
硝酸型模拟酸雨 Nitric-rich simulated acid rain | ||||
pH = 1.5 | 0.517 ± 0.020eD | 0.278 ± 0.002dD | 0.794 ± 0.018eE | 1.861 |
pH = 3.1 | 0.834 ± 0.024dC | 0.311 ± 0.006cC | 1.145 ± 0.025dD | 2.687 |
pH = 4.1 | 0.949 ± 0.014cB | 0.346 ± 0.004bB | 1.295 ± 0.011cC | 2.744 |
pH = 5.1 | 0.999 ± 0.021bA | 0.351 ± 0.009abAB | 1.350 ± 0.019bB | 2.845 |
pH = 7.0 (CK) | 1.039 ± 0.024aA | 0.361 ± 0.005aA | 1.400 ± 0.023aA | 2.878 |
Table 3 Effects of three different simulated rain types on the leaf photosynthetic pigment contents of Brassica napus (mean ± SD)
酸雨处理 Acid rain treatment | 叶绿素a Chl a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | 叶绿素a/叶绿素b Chl a/Chl b |
---|---|---|---|---|
硫酸型模拟酸雨 Sulphur-rich simulated acid rain | ||||
pH = 1.5 | 0.678 ± 0.040cC | 0.297 ± 0.005cC | 0.975 ± 0.045cC | 2.279 |
pH = 3.1 | 0.903 ± 0.039bB | 0.328 ± 0.010bB | 1.231 ± 0.047bB | 2.753 |
pH = 4.1 | 0.966 ± 0.047abAB | 0.350 ± 0.008aA | 1.316 ± 0.054abAB | 2.757 |
pH = 5.1 | 1.028 ± 0.045aA | 0.356 ± 0.004aA | 1.384 ± 0.042aA | 2.891 |
pH = 7.0 (CK) | 1.039 ± 0.091aA | 0.361 ± 0.016aA | 1.400 ± 0.090aA | 2.878 |
混合型模拟酸雨 Mixed simulated acid rain | ||||
pH = 1.5 | 0.594 ± 0.034dC | 0.286 ± 0.018cC | 0.880 ± 0.046dC | 2.074 |
pH = 3.1 | 0.854 ± 0.40cB | 0.318 ± 0.013bB | 1.172 ± 0.053cB | 2.689 |
pH = 4.1 | 0.951 ± 0.032bA | 0.348 ± 0.014aA | 1.299 ± 0.039bA | 2.729 |
pH = 5.1 | 1.001 ± 0.035abA | 0.352 ± 0.014aA | 1.353 ± 0.048abA | 2.840 |
pH = 7.0 (CK) | 1.039 ± 0.075aA | 0.361 ± 0.006aA | 1.400 ± 0.072aA | 2.878 |
硝酸型模拟酸雨 Nitric-rich simulated acid rain | ||||
pH = 1.5 | 0.517 ± 0.020eD | 0.278 ± 0.002dD | 0.794 ± 0.018eE | 1.861 |
pH = 3.1 | 0.834 ± 0.024dC | 0.311 ± 0.006cC | 1.145 ± 0.025dD | 2.687 |
pH = 4.1 | 0.949 ± 0.014cB | 0.346 ± 0.004bB | 1.295 ± 0.011cC | 2.744 |
pH = 5.1 | 0.999 ± 0.021bA | 0.351 ± 0.009abAB | 1.350 ± 0.019bB | 2.845 |
pH = 7.0 (CK) | 1.039 ± 0.024aA | 0.361 ± 0.005aA | 1.400 ± 0.023aA | 2.878 |
酸雨处理 Acid rain treatment | 叶绿素a Ch l a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | |
---|---|---|---|---|
p < 0.05 | p < 0.05 | p < 0.05 | ||
pH = 1.5 | SAR | a | a | a |
MAR | b | ab | b | |
NAR | c | b | c | |
pH = 3.1 | SAR | a | a | a |
MAR | ab | ab | ab | |
NAR | b | b | b | |
pH = 4.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 5.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 7.0 (CK) | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a |
Table 4 Significant differences of SAR, MAR and NAR in the same pH value condition
酸雨处理 Acid rain treatment | 叶绿素a Ch l a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | |
---|---|---|---|---|
p < 0.05 | p < 0.05 | p < 0.05 | ||
pH = 1.5 | SAR | a | a | a |
MAR | b | ab | b | |
NAR | c | b | c | |
pH = 3.1 | SAR | a | a | a |
MAR | ab | ab | ab | |
NAR | b | b | b | |
pH = 4.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 5.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 7.0 (CK) | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a |
[1] | Ashenden TW, Williams JH (1988). Differences in the spectral characteristics of brich canopies exposed to simulated acid rain. New Phytologist, 109, 79-84. |
[2] | Calatayud A, Iglesias DJ, Talón M, Barreno E (2003). Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiology and Biochemistry, 41, 839-845. |
[3] | Chen HL (陈罕立), Wang JN (王金南) (2005). Exploring the total emission control of nitrogen oxides in China. Research of Environmental Sciences (环境科学研究), 18, 107-110. (in Chinese with English abstract) |
[4] | Demmig-Adams B (1990). Carotenoids and photoprotection in plants: a role for the xanthophylls zeaxanthin. Biochimica et Biophysica Acta, 1020, 1-24. |
[5] | Feng ZW (冯宗炜) (1993). Effect of Acid Rain on Ecosystem (酸雨对生态系统的影响). China Science and Technology Press, Beijing. (in Chinese) |
[6] | Ferenbaugh RW (1976). Effects of simulated acid rain on Phaseolus vulgaris L. American Journal of Botany, 63, 283-288. |
[7] | Guo SK (郭书奎), Zhao KF (赵可夫) (2001). The possible mechanisms of NaCl inhibit photosynthetis of maize seedlings. Acta Photophysiologica Sinica (植物生态学报), 27, 461-466. (in Chinese with English abstract) |
[8] | Hou FL (侯福林) (2004). Plant Physiological and Experimental Course (植物生理学实验教程). Science Press, Beijing. 13-15, 90. (in Chinese) |
[9] | Li HS (李合生) (2000). Principles and Techniques of Plant Physiological Biochemical Experiment (植物生理生化实验原理和技术). Higher Education Press, Beijing. 184-225, 260-261. (in Chinese) |
[10] | Li W (李巍), Yang ZF (杨志峰) (2000). Preliminary study on environmental impact assessment of significant economic policies―EIA of China automobile industry development policy. China Environmental Science (中国环境科学), 20, 114-118. (in Chinese with English abstract) |
[11] | Liang J (梁骏), Zheng YF (郑有飞), Li L (李璐), Mai BR (麦博儒) (2008). Effects of acid rain upon soil acidization and growth/development of rape crop in its middle-late stages. Journal of Agro-Environment Science (农业环境科学学报), 27, 1043-1050. (in Chinese with English abstract) |
[12] | Liu DY (刘大永), Zhu LQ (朱利泉), Liang Y (梁颖) (1997). Effect of acid rain and deposited coal dust on the activities of three antioxidiant enzymes in lettuce and Chinese cabbage. Chinese Journal of Applied & Environmental Biology (应用与环境生物学报), 3, 26-30. (in Chinese with English abstract) |
[13] | Liu YY (刘燕云), Cao HF (曹洪法), Shu JM (舒俭民), Gao YX (高映新) (1991). Effects of simulated acid rain and SO2 on growth and yield of vegetables. Acta Scientiae Circumstantiae (环境科学学报), 11, 328-335. (in Chinese with English abstract) |
[14] | Lu RK (鲁如坤) (1999). Soil Agricultural Chemistry Analysis Method (土壤农业化学分析方法). Chinese Agricultural Science and Technology Press, Beijing. (in Chinese) |
[15] | Lütz C, Anegg S, Gerant D, Alaoui-Sossé B, Gerard J, Dizengremel P (2000). Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiologia Plantarum, 109, 252-259. |
[16] | Niu XM (牛星梅) (1995). Nanjing acid rain condition and its changing trend in these years. Jiangsu Environmental Science and Technology (江苏环境科技), (3), 11-13. (in Chinese with English abstract) |
[17] | Peng CX (彭彩霞), Peng CL (彭长连), Lin GZ (林桂珠), Wen DZ (温达志) (2003). Effects of simulated acid rain on seed germination and seedling growth of three crops. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 11, 400-404. (in Chinese with English abstract) |
[18] | Qi ZM (齐泽民), Zhong ZC (钟章成), Deng J (邓君) (2001b). The effects of simulated acid rain on nitrogen metabolism of Eucommia ulmoides levels. Acta Phytoecologica Sinica (植物生态学报), 25, 544-548. (in Chinese with English abstract) |
[19] | Qi ZM (齐泽民), Zhong ZC (钟章成), Deng J (邓君), Liu SJ (刘素君) (2001a). Effects of simulated acid rain on lipid peroxidation of membrane and nitrogen metabolism of Eucommia ulmoides leaves. Journal of Southwest China Normal University (Natural Science) 西南师范大学学报(自然科学版)), 26, 38-44. (in Chinese with English abstract) |
[20] |
Samuels TD, Kucukakyuz K, Magaly RZ (1997). Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat. Plant Physiology, 113, 527-534.
DOI URL PMID |
[21] | Shan YF (单运锋), Feng ZW (冯宗炜), Chen CY (陈楚莹) (1989). Effects of simulate acid rain on the biomasses of seven forest species. Acta Ecologica Sinica (生态学报), 9, 274-276. (in Chinese with English abstract) |
[22] | Siffel P, Braunova Z, Sindelkova E, Cudlin P (1996). The effect of simulated acid rain on chlorophyll fluorescence spectra of spruce seedlings ( Picea abies L. Karst). Journal of Plant Physiology, 148, 271-274. |
[23] | Singh A, Agrawal M (1996). Response of two cultivars of Triticum aestivum L. to simulated acid rain. Environmental Pollution, 91, 161-167. |
[24] | Tong GH (童贯和), Liang HL (梁惠玲) (2005). Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seedlings. Chinese Journal of Applied Ecology (应用生态学报), 16, 1487-1492. (in Chinese with English abstract) |
[25] | Tong GH (童贯和), Liu TJ (刘天骄), Huang W (黄伟) (2005). Effect of simulated acid rain and its acidified soil on lipid peroxidation of wheat seedlings. Acta Ecologica Sinica (生态学报), 25, 1509-1516. (in Chinese with English abstract) |
[26] | Wang JN (王金南), Chen HL (陈罕立) (2004). China city: urgent to block nitrogen oxides pollution. Environmental Economy (环境经济), (7), 1-5. (in Chinese) |
[27] | Wang KF (王开峰), Liao BH (廖柏寒), Liu HY (刘红玉), Zeng M (曾敏), Zhang Y (张永) (2005). Complex effects of simulated acid rain and zinc on growth and physiological- biochemical characteristics of Vicia faba L. Acta Scientiae Circumstantiae (环境科学学报), 25, 203-207. (in Chinese with English abstract) |
[28] | Wang W (王玮) (2004). The discussion of NOx pollution and related issues. In: Chinese Society for Environmental Science ed. Chinese NOx Pollution Control Papers (全国氮氧化物污染控制研讨会论文集). China Environmental Science Press, Beijing 24. (in Chinese) |
[29] | Wang ZF (王自发), Gao C (高超), Xie FY (谢付莹) (2007). Modeling studies of acid rain in China: progress and challenge. Chinese Journal of Nature (自然杂志), 29(2), 78-82. (in Chinese with English abstract) |
[30] | Wood T, Bormann FH (1974). The effects of an artificial acid mist upon the growth of Betula alleghaniensis Britt. Environmental Pollution, 7, 259-268. |
[31] | Yan CL (严重玲), Li RZ (李瑞智), Zhong ZC (钟章成) (1995). Effect of simulated acid rain on ecophysiological characteristics of mung bean and maize. Chinese Journal of Applied Ecology (应用生态学报), 6(Suppl.), 124-131. (in Chinese with English abstract) |
[32] | Zeng QL (曾庆玲), Huang XH (黄晓华), Zhou Q (周青) (2005). Effect of acid rain on seed germination of rice, wheat and rape. Environmental Science (环境科学), 26, 181-184. (in Chinese with English abstract) |
[33] | Zhang FZ (张福珠), Tang HS (唐鸿寿), Yang XF (杨晓峰) (1993). Acid rain and its harms to the sensitivities of main crops on the southwest. In: National Environmental Protection Agency ed. Air Pollution Prevention Technology Research (大气污染防治技术研究) Science Press, Beijing. 827-834. (in Chinese) |
[34] | Zhang YM (张耀民), Wu LY (吴丽英), Wang XX (王晓霞), Zhang J (张静) (1996). Effects of acid rain on leaf injury and physiological characteristics of crops. Agro- Environmental Protection (农业环境保护), 15, 197-208, 227. (in Chinese with English abstract) |
[35] | Zheng YF (郑有飞), Mai BR (麦博儒), Liang J (梁骏), Li L (李璐), Tang XY (唐信英), Wu RJ (吴荣军) (2008). Effect of different simulated acid rain types on the nutrient quality of rape. Acta Scientiae Circumstantiae (环境科学学报), 28, 2133-2140. (in Chinese with English abstract) |
[36] | Zhou Q (周青), Zeng QL (曾庆玲), Huang XH (黄晓华), Zhang GS (张光生), Liang CJ (梁婵娟), Wang LH (王丽红) (2004). Effects of acid rain on seed germination of various acid-fast plant. Acta Ecologica Sinica (生态学报), 24, 2029-2036. (in Chinese with English abstract) |
[1] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[2] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[3] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
[4] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[5] | LIU Mu-Qing, YANG Xiao-Feng, SHI Yu-Ming, LIU Yu-Wei, LI Xiao-Meng, LIAO Wan-Jin. Effects of simulated acid rain on the competitive relationship between invasive Ambrosia artemisiifolia and its co-occurring indigenous forb Bidens bipinnata [J]. Chin J Plant Ecol, 2022, 46(8): 932-940. |
[6] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[7] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[8] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[9] | XIE Wei, HAO Zhi-Peng, ZHANG Xin, CHEN Bao-Dong. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks [J]. Chin J Plant Ecol, 2022, 46(5): 493-515. |
[10] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[11] | LI Si-Yuan, ZHANG Zhao-Xin, RAO Liang-Yi. Responses of non-structural carbohydrates and growth hormone in Morus alba seedlings to flooding stress [J]. Chin J Plant Ecol, 2022, 46(3): 311-320. |
[12] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[13] | XIONG Shu-Ping, CAO Wen-Bo, CAO Rui, ZHANG Zhi-Yong, FU Xin-Lu, XU Sai-Jun, PAN Hu-Qiang, WANG Xiao-Chun, MA Xin-Ming. Effects of horizontal structure on canopy vertical structure, microenvironment and yield of Triticum aestivum [J]. Chin J Plant Ecol, 2022, 46(2): 188-196. |
[14] | Yong LIN Zhi Chen Shi-Ping CHEN ran liu Xiao-Ping XIN Gui-Rui YU. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors [J]. Chin J Plant Ecol, 2022, 46(12): 1461-1472. |
[15] | Guang-Shuai CUI Tian-Xiang LUO Eryuan LIANG Lin Zhang. Advances in the study of shrub facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn