Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (4): 375-386.DOI: 10.3773/j.issn.1005-264x.2010.04.003
Special Issue: 生态系统碳水能量通量; 碳循环
• Research Articles • Previous Articles Next Articles
XU Hao1,2,*(), LI Yan1,2, XIE Jing-Xia3, CHENG Lei1,2, ZHAO Yan1,2, LIU Ran1,4
Received:
2009-04-08
Accepted:
2009-06-21
Online:
2010-04-08
Published:
2010-04-01
Contact:
XU Hao
XU Hao, LI Yan, XIE Jing-Xia, CHENG Lei, ZHAO Yan, LIU Ran. Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix[J]. Chin J Plant Ecol, 2010, 34(4): 375-386.
Fig. 2 Vertical distribution of surface area of absorbing roots of Tamarix ramosissima (A, B) and soil water content (C, D) in its habitat with natural and no precipitation. Bars represent the standard error of the average.
Fig. 4 Seasonal changes in apparent quantum efficiency of photosynthesis (Φ), photosynthetic photon flux density at light compensation point (Ic), net photosynthetic rate at light saturation point (Ps), and photosynthetic water use efficiency of Tamarix ramosissima.
Fig. 5 Effects of potential evaporation on physiological activities of Tamarix ramosissima. A, The correlation between net photosynthetic rate at light saturation point / potential evaporation and the maximum transpiration rate (Trmax). B, The correlation between potential evaporation and photosynthetic water use efficiency (WUE).
月份 Month | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
---|---|---|---|---|---|
每日净辐射 Daily net radiation (W·m-2) | 4 471 | 4 392 | 5 170 | 4 635 | 2 638 |
每日光合有效辐射 Daily photosynthetically active radiation (mmol·m-2·d-1) | 47 745 | 47 462 | 50 848 | 39 629 | 34 533 |
平均温度 Average temperature (℃) | 19.1 | 27.0 | 24.3 | 22.1 | 17.5 |
潜在蒸发力 Potential evaporation (mm) | 202.7 | 205.3 | 208.5 | 160.0 | 138.0 |
降水 Precipitation (mm) | 6.8 | 7.2 | 11.1 | 44.2 | 1.1 |
地下水位 Water table (m) | 3.12 | 4.04 | 3.69 | 4.43 | 3.87 |
群落碳收支 Community carbon budget (g C·m-2·d-1) | -0.40a | -0.42a | -0.51a | -0.33a | -0.24a |
群落蒸腾耗水 Community water loss (mm·d-1) | 0.95 | 0.84 | 0.91 | 0.21 | 0.46 |
叶面积指数LAI | 0.19 | 0.17 | 0.25 | 0.15 | 0.18 |
碳平衡 Ecosystem carbon balance (g C·m-2·d-1) | -0.07b | -0.10b | -0.11b | -0.19b | -0.26a |
水分蒸散 Ecosystem evapotranspiration (mm·d-1) | 1.17 | 1.07 | 1.28 | 1.64 | 0.50 |
Table 1 Seasonal variation of meteorological factors, water table, carbon budget and leaf area index (LAI) in Tamarix ecosystem
月份 Month | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
---|---|---|---|---|---|
每日净辐射 Daily net radiation (W·m-2) | 4 471 | 4 392 | 5 170 | 4 635 | 2 638 |
每日光合有效辐射 Daily photosynthetically active radiation (mmol·m-2·d-1) | 47 745 | 47 462 | 50 848 | 39 629 | 34 533 |
平均温度 Average temperature (℃) | 19.1 | 27.0 | 24.3 | 22.1 | 17.5 |
潜在蒸发力 Potential evaporation (mm) | 202.7 | 205.3 | 208.5 | 160.0 | 138.0 |
降水 Precipitation (mm) | 6.8 | 7.2 | 11.1 | 44.2 | 1.1 |
地下水位 Water table (m) | 3.12 | 4.04 | 3.69 | 4.43 | 3.87 |
群落碳收支 Community carbon budget (g C·m-2·d-1) | -0.40a | -0.42a | -0.51a | -0.33a | -0.24a |
群落蒸腾耗水 Community water loss (mm·d-1) | 0.95 | 0.84 | 0.91 | 0.21 | 0.46 |
叶面积指数LAI | 0.19 | 0.17 | 0.25 | 0.15 | 0.18 |
碳平衡 Ecosystem carbon balance (g C·m-2·d-1) | -0.07b | -0.10b | -0.11b | -0.19b | -0.26a |
水分蒸散 Ecosystem evapotranspiration (mm·d-1) | 1.17 | 1.07 | 1.28 | 1.64 | 0.50 |
Fig. 8 Relationship between carbon budget of Tamarix community and photosynthetically active radiation (PAR). Each plot represents the average of continous 20 d during the same period in the growth season of 2005-2007.
[1] | Anderson JE (1982). Factors controlling transpiration and photosynthesis in Tamarix chinensis Lour. Ecology, 63, 48-56. |
[2] | Arndt SK (2006). Integrated research of plant functional traits is important for the understanding of ecosystem processes. Plant and Soil, 285, 1-3. |
[3] | Chen ZH (陈志华), Shi GY (石广玉), Che HZ (车慧正) (2005). Analysis of the solar radiation of Xinjiang Uygur Autonomous Region in recent 40 years. Arid Land Geography (干旱区地理), 28, 734-739. (in Chinese with English abstract) |
[4] |
Cleverly JR, Smith SD, Sala A, Devitt DA (1997). Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia, 111, 12-18.
URL PMID |
[5] | Cohen Y, Fuchs M, Cohen S (1983). Resistance to water uptake in a mature citrus tree. Journal of Experimental Botany, 34, 451-560. |
[6] | Donovan LA, Ehleringer JR (1994). Water stress and use of summer precipitation in a Great Basin shrub community. Functional Ecology, 8, 289-297. |
[7] | Eagleson PS (1982). Ecological optimality in water limited natural soil-vegetation systems. Water Resources Research, 18, 325-354. |
[8] | Ehleringer JR (1995). Variation in gas exchange characteristics among desert plants. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis Springer-Verlag, Berlin. 361-392. |
[9] | Goulden ML, Munger JW, Fan SM (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2, 169-182. |
[10] | Hastings SJ, Oechel WC, Muhlia-Melo A (2005). Diurnal, seasonal, and annual variation in net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 11, 927-939. |
[11] | Horton JL, Kolb TE, Hart SC (2001). Physiological response to groundwater depth varies among species and with river flow regulation. Ecological Applications, 11, 1046-1059. |
[12] | Li Y, Xu H, Cohen S (2005). Long-term hydraulic acclimation to soil texture and radiation load in cotton. Plant, Cell & Environment, 28, 492-499. |
[13] | Massman WJ, Lee X (2002). Eddy covariance corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121-144. |
[14] |
Muller O, Hikosaka K, Hirose T (2005). Seasonal changes in light and temperature affect the balance between light harvesting and light utilizations components of photosynthesis in an evergreen understory shrub. Oecologia, 143, 501-508.
DOI URL PMID |
[15] | Qian Y, Kaiser DP, Leung LR, Xu M (2006). More frequent cloud-free sky and less surface solar radiation in China from 1955-2000. Geophysical Research Letters, 33, L01812. |
[16] | Rundell PW, Nobel PS (1991). Structure and function of desert root systems. In: Atkinson D ed. Plant Root Growth: an Ecological Perspective. Blackwell, Oxford, UK. 349-378. |
[17] | Sala A, Smith SD (1996). Water use by Tamarix ramosissima and associated phreatophytes in a Mojave desert flood plain. Ecological Applications, 6, 888-898. |
[18] |
Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D III, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
URL PMID |
[19] | Schwinning S, Ehleringer JR (2001). Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. Journal of Ecology, 89, 464-480. |
[20] | Smith SD, Monson RK, Anderson JE (1996). Physiological Ecology of North American Desert Plants. Springer, Berlin. 165-178. |
[21] | Sperry JS, Hacke UG (2002). Desert shrub water relations with respect to soil characteristics and plant functional type. Functional Ecology, 16, 367-378. |
[22] | Su PX (苏培玺), Zhao AF (赵爱芬), Zhang LX (张立新), Du MW (杜明武), Chen HS (陈怀顺) (2003). Characteristic in photosynthesis, transpiration and water use efficiency of Haloxylon ammodendron and Calligonum mongolicum of desert species. Acta Botanica Boreal-Occidental Sinica (西北植物学报), 23, 11-17. (in Chinese with English abstract) |
[23] | Wang YG, Xiao DN, Li Y (2008). Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: a case study Fubei Region of Xinjiang Province, China. Environment Monitoring and Assessment, 140, 291-302. |
[24] | Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. |
[25] | Wesely ML, Lenschow DH (1989). Flux measurement techniques. In: Lenschow DH, Hicks BB eds. Global Tropospheric Chemistry, Chemical Fluxes in the Global Atmosphere. The National Center for Atmospheric Research (NCAR) Technical Report, Boulder, CO, USA. 31-46. |
[26] | Xie JX, Li Y, Zhai CX, Li CH, Lan ZD (2009). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environmental Geology, 56, 953-961. |
[27] | Xu H, Li Y (2006). Water use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant and Soil, 285, 5-17. |
[28] | Xu H (许皓), Li Y (李彦), Zou T (邹婷), Xie JX (谢静霞), Jiang LX (蒋礼学) (2007). Ecophysiological response and morphological adjustment of Haloxylon ammodendron towards variation in summer precipitation. Acta Ecologica Sinica (生态学报), 27, 5019-5028. (in Chinese with English abstract) |
[29] | Yang JS (杨劲松) (1995). Progress in the study on soil salinization. Soil (土壤), 27(1), 23-27. (in Chinese with English abstract) |
[30] | Ye WH (叶万辉), Zhang XM (张希明), Li XM (李小明), Deng X (邓雄) (2002). A study of the gas exchange characteristics of four desert plants. Acta Phytoecologica Sinica (植物生态学报), 26, 605-612. (in Chinese with English abstract) |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3466
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 5646
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn