Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (4): 411-421.DOI: 10.3724/SP.J.1258.2011.00411
• Research Articles • Previous Articles Next Articles
SUN Lin, XIONG Wei, GUAN Wei, WANG Yan-Hui*(), XU Li-Hong
Received:
2010-11-12
Accepted:
2011-01-04
Online:
2011-11-12
Published:
2011-04-13
Contact:
WANG Yan-Hui
SUN Lin, XIONG Wei, GUAN Wei, WANG Yan-Hui, XU Li-Hong. Use of storage water in Larix principis-ruprechtii and its response to soil water content and potential evapotranspiration: a modeling analysis[J]. Chin J Plant Ecol, 2011, 35(4): 411-421.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00411
Fig. 1 Schematic diagram of water transfer within the tree stem (refer to Lhommea et al., 2001). ψl, leaf water potential; ψs, soil water potential conduct; ψx, xylem vessels water potential; ψz, xylem plant-reservoir water potential; C, hydraulic capacitance; hsx, the height of root to xylem vessels (m); Js, xylem conduct water flow; Jz, water exchange between the xylem vessels and the storage compartment; rsx, soil-xylem hydraulic resistance; rxl, xylem-leaf-air hydraulic resistance; rzx, storage hydraulic resistance; Tr, transpiration rate.
样树编号 Sample tree number | 胸径 DBH (cm) | 树高 Tree height (m) | 探头高度 Probe position (m) | 探头位置树径 Diameter at probe position (cm) | 边材面积 Sapwood area (cm2) | 冠幅面积 Canopy area (m2) |
---|---|---|---|---|---|---|
4 | 13.1 | 9.9 | 1.5 | 13.1 | 78.54 | 16.33 |
17 | 11.2 | 7.1 | 2.0 | 10.0 | 50.84 | 10.25 |
18 | 6.4 | 11.1 | 2.0 | 5.7 | 19.85 | 6.31 |
25 | 8.5 | 7.9 | 1.5 | 8.5 | 38.42 | 6.31 |
40 | 9.1 | 8.4 | 1.5 | 9.1 | 43.01 | 6.87 |
51 | 10.2 | 8.6 | 1.5 | 10.2 | 51.93 | 7.94 |
55 | 10.8 | 7.9 | 1.5 | 10.8 | 57.08 | 8.53 |
65 | 13.0 | 8.1 | 1.5 | 13.0 | 77.55 | 10.77 |
Table 1 Information of the sample trees in Larix principis-rupprechtii stand
样树编号 Sample tree number | 胸径 DBH (cm) | 树高 Tree height (m) | 探头高度 Probe position (m) | 探头位置树径 Diameter at probe position (cm) | 边材面积 Sapwood area (cm2) | 冠幅面积 Canopy area (m2) |
---|---|---|---|---|---|---|
4 | 13.1 | 9.9 | 1.5 | 13.1 | 78.54 | 16.33 |
17 | 11.2 | 7.1 | 2.0 | 10.0 | 50.84 | 10.25 |
18 | 6.4 | 11.1 | 2.0 | 5.7 | 19.85 | 6.31 |
25 | 8.5 | 7.9 | 1.5 | 8.5 | 38.42 | 6.31 |
40 | 9.1 | 8.4 | 1.5 | 9.1 | 43.01 | 6.87 |
51 | 10.2 | 8.6 | 1.5 | 10.2 | 51.93 | 7.94 |
55 | 10.8 | 7.9 | 1.5 | 10.8 | 57.08 | 8.53 |
65 | 13.0 | 8.1 | 1.5 | 13.0 | 77.55 | 10.77 |
参数 Parameter | 定义 Definition | 数值 Value | 单位 Unit | 来源 Source |
---|---|---|---|---|
LAI | 叶面积指数 Leaf area index | 3.78 | m2?m-2 | 观测 Observed |
ρs | 林分边材密度 Stand sapwood density | 15.63 | cm2?m-2 | 观测 Observed |
gsmax | 最大叶片气孔导度 Maximum leaf stomatal conductance | 36.42 | mm?s-1 | 拟合 Fitted |
kIP | 气孔导度光辐射驱动系数 Parameter of stomatal conductance drove by PAR | 5.36 | 拟合 Fitted | |
kDs | 气孔导度水汽驱动系数 Parameter of stomatal conductance drive by Dvp | 6.22 | 拟合 Fitted | |
ψhx | 半气孔导度木质部水势 Xylem water potential at half gsmax | -0.70 | MPa | 拟合Fitted |
kψx | 气孔导度木质部水势系数 Parameter of stomatal conductance limit by xylem water potential | -5.04 | 拟合 Fitted | |
C | 林分树体水容 Stand tree hydraulic capacitance | 0.80 | kg?m-2?MPa-1 | 率定 Calibrated |
rsx | 土壤-木质部导管阻力 Hydraulic resistance of soil to xylem vessels | 2.80 | MPa?cm-2?min-1?g -1 | 观测 Observed |
rzx | 树体储水组织-木质部导管阻力 Hydraulic resistance between xylem vessels to the organism of tree water storage | 0.85 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
rxl | 木质部导管-叶阻力 Hydraulic resistance of xylem vessels to leaf | 2.80 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
wzmax | 树体最大储水 Maximum storage water | 20.00 | kg?m-2 | 率定 Calibrated |
Table 2 Parameters of canopy conductance model
参数 Parameter | 定义 Definition | 数值 Value | 单位 Unit | 来源 Source |
---|---|---|---|---|
LAI | 叶面积指数 Leaf area index | 3.78 | m2?m-2 | 观测 Observed |
ρs | 林分边材密度 Stand sapwood density | 15.63 | cm2?m-2 | 观测 Observed |
gsmax | 最大叶片气孔导度 Maximum leaf stomatal conductance | 36.42 | mm?s-1 | 拟合 Fitted |
kIP | 气孔导度光辐射驱动系数 Parameter of stomatal conductance drove by PAR | 5.36 | 拟合 Fitted | |
kDs | 气孔导度水汽驱动系数 Parameter of stomatal conductance drive by Dvp | 6.22 | 拟合 Fitted | |
ψhx | 半气孔导度木质部水势 Xylem water potential at half gsmax | -0.70 | MPa | 拟合Fitted |
kψx | 气孔导度木质部水势系数 Parameter of stomatal conductance limit by xylem water potential | -5.04 | 拟合 Fitted | |
C | 林分树体水容 Stand tree hydraulic capacitance | 0.80 | kg?m-2?MPa-1 | 率定 Calibrated |
rsx | 土壤-木质部导管阻力 Hydraulic resistance of soil to xylem vessels | 2.80 | MPa?cm-2?min-1?g -1 | 观测 Observed |
rzx | 树体储水组织-木质部导管阻力 Hydraulic resistance between xylem vessels to the organism of tree water storage | 0.85 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
rxl | 木质部导管-叶阻力 Hydraulic resistance of xylem vessels to leaf | 2.80 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
wzmax | 树体最大储水 Maximum storage water | 20.00 | kg?m-2 | 率定 Calibrated |
[1] | Buckley TN, Mott KA, Farquhar GD (2003). A hydromechanical and biochemical model of stomatal conductance. Plant, Cell & Environment, 26, 1767-1785. |
[2] | Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old- growth Douglas-fir trees. Tree Physiology, 27, 181-198. |
[3] | Cox PM, Huntingford C, Harding RJ (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212-213, 79-94. |
[4] | Dewar RC (2002). The Ball-Berry-Leuning and Tardieu- Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant, Cell & Environment, 25, 1383-1398. |
[5] |
Gao Q, Yu M, Zhang XS, Xu HM, Huang YM (2005). Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment. Functional Plant Biology, 32, 583-598 .
URL PMID |
[6] | Gao Q, Zhao P, Zeng X, Cai X, Shen W (2002). A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant, Cell & Environment, 25, 1373-1381. |
[7] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[8] | Hanson PJ, Amthor JS, Wullschleger SD, Wilson KB, Grant RE, Hartiey A, Hui D, Hunt ER, Johnson DW, Kimball JS, King AW, Luo Y, Mcnulty SG, Sun G, Thornton PE, Wang S, Williams M, Baldocchi DD, Cushman RM (2004). Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data. Ecological Monographs, 74, 443-489. |
[9] | Hunt ER, Running SW, Federer CA (1991). Extrapolating plant water flow resistances and capacitances to regional scales. Agricultural and Forest Meteorology, 54, 169-195. |
[10] |
Jackson RB, Sperry JS, Dawson TE (2000). Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science, 5, 482-488.
URL PMID |
[11] | Jarvis PG (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society London Series B, 273, 593-610. |
[12] | Jones HG (1990). Plants and Microclimate. Cambridge University Press, Cambridge. |
[13] | Katul G, Leuning R, Oren R (2003). Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell & Environment, 26, 339-350. |
[14] | Kumagai T, Aoki S, Otsuki K, Utsumi Y (2009). Impact of stem water storage on diurnal estimates of whole-tree transpiration and canopy conductance from sap flow measurements in Japanese cedar and Japanese cypress trees. Hydrological Processes, 23, 2335-2344. |
[15] | Larcher W (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups 4th edn. Springer, Berlin. |
[16] | Lhommea JP, Rocheteau A, Ourcival JM, Rambal S (2001). Non-steady-state modelling of water transfer in a Mediterranean evergreen canopy. Agricultural and Forest Meteorology, 108, 67-83. |
[17] | Liu SR (刘世荣), Chang JG (常建国), Sun PS (孙鹏森) (2007). Forest hydrology: forest and water in a context of global change. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 753-756. (in Chinese with English abstract) |
[18] | Loustau D, Berbigier P, Roumagnac P, Arruda-Pacheco C, David JS, Ferreira MI, Pereira JS, Tavares R (1996). Transpiration of a 64-year-old maritime pine stand in Portugal I. Seasonal course of water flux through maritime pine. Oecologia, 107, 33-42. |
[19] | Ma LY (马履一), Sun PS (孙鹏森), Ma LY (马李一) (2001). Sapwood area calculation and water use scaling up from individual trees to stands of Chinese pine and black locus. Journal of Beijing Forestry University (北京林业大学学报), 23(4), 1-5. (in Chinese with English abstract) |
[20] |
Meinzer FC, Clearwater MJ, Goldstein G (2001). Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany, 45, 239-262.
DOI URL PMID |
[21] | Monteith JL, Unsworth MH (1990). Principles of Environmental Physics. Edward Arnold, London. |
[22] | Nouvellon Y, Rambal S, Seen DL, Moran MS, Lhomme JP, Bégué A, Chehbouni AG, Kerr Y (2000). Modelling of daily fluxes of water and carbon from shortgrass steppes. Agricultural and Forest Meteorology, 100, 137-153. |
[23] |
Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP (2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
DOI URL PMID |
[24] | Running SW (1980). Relating plant capacitance to the water relations of Pinus contorta. Forest Ecology Management, 2, 237-252. |
[25] | Tang JW, Bolstad PV, Ewers BE, Desai AR, Davis KJ, Carey EV (2006). Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. Journal of Geophysical Research, 111, G02009. doi: 10.1029/2005JG000083. |
[26] | Thornley JHM, Johnston IR (1990). Plant and Crop Modelling. Clarendon Press, Oxford. |
[27] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[28] | Verbeeck H, Steppe K, Nadezhdina N, de Beeck MO, Deckmyn G, Meiresonne L, Lemeur R, Čermák J, Ceulemans R, Janssens IA (2007a). Model analysis of the effects of atmospheric drivers on storage water use in Scots pine. Biogeosciences, 4, 657-671. |
[29] |
Verbeeck H, Steppe K, Nadezhdina N, de Beeck MO, Deckmyn G, Meiresonne L, Lemeur R, Čermák J, Ceulemans R, Janssens IA (2007b). Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Physiology, 27, 1671-1685.
URL PMID |
[30] | Wang H (王华), Zhao P (赵平), Cai XA (蔡锡安), Wang Q (王权), Ma L (马玲), Rao XQ (饶兴权), Zeng XP (曾小平) (2007). Partitioning of night sap flow of Acacia mangium and its implication for estimating whole-tree transpiration. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 777-786. (in Chinese with English abstract) |
[31] | Xiong W (熊伟), Wang YH (王彦辉), Xu DY (徐德应) (2003). Regulations of water use for transpiration of Larix princioi-rupprechtii plantation and its response on environmental factors in Southern Ningxia hilly area. Scientia Silvae Sinicae (林业科学), 39, 1-7. (in Chinese with English abstract) |
[32] | Xiong W (熊伟), Wang YH (王彦辉), Yu PT (于澎涛), Liu HL (刘海龙), Xu LH (徐丽宏), Shi ZJ (时忠杰), Mo F (莫菲) (2008). Variation of sap flow among individual trees and scaling-up for estimation of transpiration of Larix principis-rupprechtii Stand. Scientia Silvae Sinicae (林业科学), 44, 34-40. (in Chinese with English abstract) |
[33] | Yu GR (于贵瑞) (2001). Progress in evapotranspiration models for terrestrial vegetation of different canopy types. Resource Science (资源科学), 23, 72-84. (in Chinese with English abstract) |
[34] | Zhou YH (周允华), Xiang YQ (项月琴), Luan LK (栾禄凯) (1996). Climatological estimation of quantum flux densities. Acta Meteorologica Sinica (气象学报), 54, 447-454. (in Chinese with English abstract) |
[35] | Zweifel R, Häsler R (2001). Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21, 561-569. |
[36] |
Zweifel R, Steppe K, Sterck FJ (2007). Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. Journal of Experimental Botany, 58, 2113-2131.
URL PMID |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[3] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[4] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[5] | LIU Yang, MA Xu, DI Nan, ZENG Zi-Hang, FU Hai-Man, LI Xin, XI Ben-Ye. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chin J Plant Ecol, 2023, 47(1): 123-133. |
[6] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
[7] | LI Dou-Dou, XI Ben-Ye, WANG Fei, JIA Su-Ping, ZHAO Hong-Lin, HE Yue-Lin, LIU Yang, JIA Li-Ming. Patterns of variations in leaf turgor pressure and responses to environmental factors in Populus tomentosa [J]. Chin J Plant Ecol, 2018, 42(7): 741-751. |
[8] | Qiu-Yue HE, Mei-Jie YAN, Jian-Guo ZHANG, Sheng DU. Sap flow of Robinia pseudoacacia in response to rainfall exclusion treatment and environment factors in a sub-humid area in Loess Plateau [J]. Chin J Plant Ecol, 2018, 42(4): 466-474. |
[9] | Qing-Xian KONG, Jiang-Bao XIA, Zi-Guo ZHAO, Fan-Zhu QU. Effects of groundwater salinity on the characteristics of leaf photosynthesis and stem sap flow in Tamarix chinensis [J]. Chin J Plan Ecolo, 2016, 40(12): 1298-1309. |
[10] | XU Shi-Qin,JI Xi-Bin,JIN Bo-Wen. Dynamics and responses of sap flow of typical sand binding plants Haloxylon ammodendron to environmental variables [J]. Chin J Plan Ecolo, 2015, 39(9): 890-900. |
[11] | WU Xu,CHEN Yun-Ming,TANG Ya-Kun. Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations [J]. Chin J Plan Ecolo, 2015, 39(12): 1176-1187. |
[12] | ZHAO Xiao-Wei, ZHAO Ping, ZHU Li-Wei, NI Guang-Yan, ZENG Xiao-Ping, NIU Jun-Feng. Seasonal dynamics of night-time stem water recharge of Schima superba and its relation to tree architecture and leaf biomass [J]. Chin J Plant Ecol, 2013, 37(3): 239-247. |
[13] | XU Fei, YANG Feng-Ting, WANG Hui-Min, DAI Xiao-Qin. Review of advances in radial patterns of stem sap flow [J]. Chin J Plant Ecol, 2012, 36(9): 1004-1014. |
[14] | MA Jian-Xin, CHEN Ya-Ning, LI Wei-Hong, HUANG Xiang, ZHU Cheng-Gang, MA Xiao-Dong. Response of sap flow in Populus euphratica to changes in groundwater depth in the middle and lower reaches of the Tarim River of northwestern China [J]. Chin J Plant Ecol, 2010, 34(8): 915-923. |
[15] | CHEN Li-Xin, ZHANG Zhi-Qiang, LI Zhan-Dong, ZHANG Wen-Juan, ZHANG Xiao-Fang, DONG Ke-Yu, WANG Guo-Yu. Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China [J]. Chin J Plant Ecol, 2010, 34(5): 535-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn