Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (9): 941-948.DOI: 10.3724/SP.J.1258.2014.00088
Special Issue: 生态化学计量
Previous Articles Next Articles
JIANG Xiao-Jie1,HU Yan-Ling2,HAN Jian-Qiu1,ZHOU Yu-Mei1,*()
Received:
2014-02-24
Accepted:
2014-07-25
Online:
2014-02-24
Published:
2014-09-22
Contact:
ZHOU Yu-Mei
JIANG Xiao-Jie,HU Yan-Ling,HAN Jian-Qiu,ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants[J]. Chin J Plant Ecol, 2014, 38(9): 941-948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00088
开顶箱 Open-top chamber | 对照样地 Control plot | 差值 Difference | |
---|---|---|---|
空气温度 Air temperature (°C) | 24.13 | 22.72 | +1.41 |
空气相对湿度 Air relative humidity (%) | 86.56 | 85.37 | +1.19 |
地下5 cm土壤温度 Soil temperature at 5 cm depth (°C) | 22.66 | 20.92 | +1.74 |
地下10 cm土壤温度 Soil temperature at 10 cm depth (°C) | 21.74 | 19.96 | +1.78 |
Table 1 Air temperature, air relative humidity, soil temperature at 5 cm and 10 cm depths in the open-top chambers and control plots during growing season
开顶箱 Open-top chamber | 对照样地 Control plot | 差值 Difference | |
---|---|---|---|
空气温度 Air temperature (°C) | 24.13 | 22.72 | +1.41 |
空气相对湿度 Air relative humidity (%) | 86.56 | 85.37 | +1.19 |
地下5 cm土壤温度 Soil temperature at 5 cm depth (°C) | 22.66 | 20.92 | +1.74 |
地下10 cm土壤温度 Soil temperature at 10 cm depth (°C) | 21.74 | 19.96 | +1.78 |
开顶箱 Open-top chamber | 对照样地 Control plot | |
---|---|---|
总碳含量 Total carbon content (%) | 6.14 ± 3.12A | 6.95 ± 2.07B |
总氮含量 Total nitrogen content (%) | 0.40 ± 0.09A | 0.37 ± 0.03B |
总磷含量 Total phosphorus content (%) | 0.56 ± 0.11A | 0.54 ± 0.03B |
Table 2 Contents of carbon (C), nitrogen (N) and phosphorus (P) of soil in open-top chambers and control plots (mean ± SD)
开顶箱 Open-top chamber | 对照样地 Control plot | |
---|---|---|
总碳含量 Total carbon content (%) | 6.14 ± 3.12A | 6.95 ± 2.07B |
总氮含量 Total nitrogen content (%) | 0.40 ± 0.09A | 0.37 ± 0.03B |
总磷含量 Total phosphorus content (%) | 0.56 ± 0.11A | 0.54 ± 0.03B |
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
牛皮杜鹃 Rhododendron aureum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
笃斯越桔 Vaccinium uliginosum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
东亚仙女木 Dryas octopetala var. asiatica | ||||||
增温 Warming (W) | ns | ns | ns | * | * | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
Table 3 Effects of warming and month on carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in leaves of Rhododendron aureum, Vaccinium uliginosum and Dryas octopetala var. asiatica using two-way ANOVA
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
牛皮杜鹃 Rhododendron aureum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
笃斯越桔 Vaccinium uliginosum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
东亚仙女木 Dryas octopetala var. asiatica | ||||||
增温 Warming (W) | ns | ns | ns | * | * | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
Fig. 1 Carbon (C), nitrogen (N) and phosphorus (P) contents in leaves of Vaccinium uliginosum, Rhododendron aureum, and Dryas octopetala var. asiatica grown in open top chambers (OTC) and control plots during growing season (mean ± SD). Different letters indicate significant difference between OTC and control in the same month at the level of 0.05.
月份 Month | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|
开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | ||||
牛皮杜鹃 Rhododendron aureum | 7 | 20.02 ± 0.23A | 9.11 ± 0.92B | 513.78 ± 8.41A | 346.75 ± 1.19B | 27.57 ± 1.19A | 38.45 ± 4.00B | ||
8 | 32.16 ± 2.69A | 27.73 ± 0.20B | 326.42 ± 19.08A | 281.95 ± 11.56B | 11.14 ± 0.50A | 10.54 ± 0.40B | |||
9 | 27.14 ± 0.17A | 22.68 ± 0.91B | 246.72 ± 1.32A | 223.45 ± 0.14B | 9.09 ± 0.03A | 10.20 ± 0.19B | |||
笃斯越桔 Vaccinium Uliginosum | 7 | 14.79 ± 0.72A | 21.31 ± 0.30B | 424.96 ± 17.46A | 457.97 ± 11.19B | 33.63 ± 1.43A | 20.70 ± 0.07B | ||
8 | 37.60 ± 0.81A | 32.28 ± 0.13B | 344.74 ± 7.67A | 376.66 ± 1.67B | 9.53 ± 0.49A | 11.86 ± 0.16B | |||
9 | 20.21 ± 1.19A | 24.57 ± 0.08B | 460.24 ± 18.50A | 530.88 ± 41.74B | 20.66 ± 1.66A | 23.52 ± 0.60B | |||
东亚仙女木 Dryas octopetala var. asiatica | 7 | 16.66 ± 0.10A | 13.70 ± 0.10B | 309.90 ± 4.85A | 375.65 ± 0.68B | 19.36 ± 1.15A | 27.42 ± 0.05B | ||
8 | 27.43 ± 0.38A | 26.20 ± 0.32B | 207.67 ± 3.59A | 263.74 ± 3.10B | 7.57 ± 0.14A | 10.18 ± 0.05B | |||
9 | 28.49 ± 1.02A | 22.60 ± 0.60B | 365.14 ± 0.03A | 317.03 ± 11.65B | 12.13 ± 0.24A | 15.80 ± 0.86B |
Table 4 C:N, C:P, and N:P ratios in Vaccinium uliginosum, Rhododendron aureum, and Dryas octopetala var. asiatica grown in open top chambers and control plots during growing season (mean ± SD)
月份 Month | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|
开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | ||||
牛皮杜鹃 Rhododendron aureum | 7 | 20.02 ± 0.23A | 9.11 ± 0.92B | 513.78 ± 8.41A | 346.75 ± 1.19B | 27.57 ± 1.19A | 38.45 ± 4.00B | ||
8 | 32.16 ± 2.69A | 27.73 ± 0.20B | 326.42 ± 19.08A | 281.95 ± 11.56B | 11.14 ± 0.50A | 10.54 ± 0.40B | |||
9 | 27.14 ± 0.17A | 22.68 ± 0.91B | 246.72 ± 1.32A | 223.45 ± 0.14B | 9.09 ± 0.03A | 10.20 ± 0.19B | |||
笃斯越桔 Vaccinium Uliginosum | 7 | 14.79 ± 0.72A | 21.31 ± 0.30B | 424.96 ± 17.46A | 457.97 ± 11.19B | 33.63 ± 1.43A | 20.70 ± 0.07B | ||
8 | 37.60 ± 0.81A | 32.28 ± 0.13B | 344.74 ± 7.67A | 376.66 ± 1.67B | 9.53 ± 0.49A | 11.86 ± 0.16B | |||
9 | 20.21 ± 1.19A | 24.57 ± 0.08B | 460.24 ± 18.50A | 530.88 ± 41.74B | 20.66 ± 1.66A | 23.52 ± 0.60B | |||
东亚仙女木 Dryas octopetala var. asiatica | 7 | 16.66 ± 0.10A | 13.70 ± 0.10B | 309.90 ± 4.85A | 375.65 ± 0.68B | 19.36 ± 1.15A | 27.42 ± 0.05B | ||
8 | 27.43 ± 0.38A | 26.20 ± 0.32B | 207.67 ± 3.59A | 263.74 ± 3.10B | 7.57 ± 0.14A | 10.18 ± 0.05B | |||
9 | 28.49 ± 1.02A | 22.60 ± 0.60B | 365.14 ± 0.03A | 317.03 ± 11.65B | 12.13 ± 0.24A | 15.80 ± 0.86B |
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine E, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Toland Ø, Turner PL, Walker LJ, Webber JM, Wookey PA (1999). Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69, 491-511. |
[3] | Bao SD (2008). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese) |
[ 鲍士旦 (2008). 土壤农化分析. 第三版.中国农业出版社, 北京.] | |
[4] | Bliss LC (1962). Adaptations of arctic and alpine plants to environmental conditions. Arctic and Alpine Research, 15, 117-144. |
[5] | Borjigidai A, Hikosaka K, Hirose T (2009). Carbon balance in a monospecific stand of an annual herb chenopodium album at an elevated CO2 concentration. Plant Ecology, 203, 33-44. |
[6] | Callaghan TV, Jonasson S, Nichols H, Heywood RB, Wookey PA (1995). Arctic terrestrial ecosystems and environmental change. Philosophical Transactions of the Royal Society, 352, 259-276. |
[7] | Carrillo Y, Pendall E, Dijkstra FA, Morgan JA, Newcomb JM (2011). Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant and Soil, 347, 339-350. |
[8] | Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491-497. |
[9] | Chapin III FS, Gaius R, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711. |
[10] | Chapin III FS, Oechel WC (1983). Photosynthesis, respiration, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients. Eco- logy, 64, 743-751. |
[11] | Debevec EM, MacLean SF (1993). Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic and Alpine Research, 25, 56-62. |
[12] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI URL PMID |
[13] | Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrubland. Plant and Soil, 259, 59-69. |
[14] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
URL PMID |
[15] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytologist, 186, 879– 889.
URL PMID |
[16] | Gordon C, Wynn JM, Woodin SJ (2001). Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist, 149, 461-471. |
[17] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[18] |
Hansen AH, Jonasson S, Michelsen A, Julkunen-Tiitto R (2006). Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs. Oecologia, 147, 1-11.
URL PMID |
[19] | Harpole WS, Nqai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, Elser JJ, Gruner DS, Hillebrand H, Shurn JB, Smith JE (2011). Nutrition co-limitation of primary producer communities. Ecology Letter, 14, 852-862. |
[20] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[21] | Hobbie SE (1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522. |
[22] | Hobbie SE, Chapin III FS (1998). The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology, 79, 1526-1544. |
[23] | Idso SB, Kimball BA, Anderson MG, Mauney JR (1987). Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agriculture, Ecosystems & Environment, 20, 1-10. |
[24] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate change 2013: the physical science basis. Contribution of working group 1. In: Stocker T, Qin DH, Plattner GK eds. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 1535. |
[25] | Jiang GM (2005). Plant Ecophsiology. Higher Education Press, Beijing. (in Chinese) |
[ 蒋高明 (2005). 植物生理生态学. 高等教育出版社, 北京.] | |
[26] | Kaarlejärvi E, Baxter R, Hofgaard A, Hytteborn H, Khitun O, Molau U, Sjögersten S, Wookey P, Olofsson J (2012). Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone. Ecosystems, 15, 1219-1233. |
[27] | Keyser AR, Kimball JS, Nemani RR, Running SW (2000). Simulating the effects of climate change on the carbon balance of North American high latitude forests. Global Change Biology, 6, 185-195. |
[28] | Klanderud K, Totland Ø (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047-2054. |
[29] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[30] | Körner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer-Verlag, Berlin. |
[31] | Kudo G, Nordehäll U, Molau U (1999). Effects of snow melt timing on leaf traits, leaf production, and shoot growth of alpine plants: comparisons along a snow melt gradient in northern Sweden. Ecoscience, 6, 439-450. |
[32] | Marion GM, Bockheim JG, Brown J (1997a). Arctic soils and the ITEX experiment. Global Change Biology, 3, 33-43. |
[33] | Marion GM, Hastings SJ, Oberbauer SF, Oechel WC (1989). Soil-plant element relationships in a tundra ecosystem. Holarctic Ecology, 12, 296-303. |
[34] | Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA (1997b). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3, 20-32. |
[35] | Nadelhoffer KJ, Giblin AE, Shaver GR. Laundre JA (1991). Effects of temperature and organic matter quality on C, N, and P mineralization in soils from six arctic ecosystems. Ecology, 72, 242-253. |
[36] | Nybakken L, Sandvik SM, Klanderud K (2011). Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine and lichens. Environmental and Experimental Botany, 72, 368-376. |
[37] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[38] |
Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267-276.
DOI URL PMID |
[39] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitcell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI URL PMID |
[40] |
Sardans J, Peltzer DA, Robert BA, Allen MS, Roger LM, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267-276.
DOI URL PMID |
[41] |
Sardans J, Peñuelas J (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 365, 1-33.
DOI URL PMID |
[42] | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235. |
[43] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82. (in Chinese with English abstract) |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[44] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534. |
[45] |
Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346.
DOI URL PMID |
[46] | Welker JM, Fahnestock JT, Sullivan PF, Chimner RA (2005). Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. Oikos, 109, 167-177. |
[47] | White A, Cannel MGR, Friend AD (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environment Change, 9, 21-30. |
[48] | Xu ZF, Wan C (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant and Soil, 336, 183-195. |
[49] | Yang MH (1981). The climate characteristics of Changbai Mountain and the north slope of vertical climatic zone. Acta Meteorologica Sinica, 39, 311-320. (in Chinese with English abstract) |
[ 杨美华 (1981). 长白山的气候特征及北坡垂直气候带. 气象学报, 39, 311-320.] |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4577
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1605
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn