Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (1): 88-101.DOI: 10.17521/cjpe.2021.0206
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
Li-Ting YANG, Yan-Yan XIE, Ke-Yi ZUO, Sen XU, Rui GU, Shuang-Lin CHEN, Zi-Wu GUO()
Received:
2021-05-31
Accepted:
2021-10-08
Online:
2022-01-20
Published:
2022-04-13
Contact:
Zi-Wu GUO
Supported by:
Li-Ting YANG, Yan-Yan XIE, Ke-Yi ZUO, Sen XU, Rui GU, Shuang-Lin CHEN, Zi-Wu GUO. Effects of ramet ratio on photosynthetic physiology of Indocalamus decorus clonal system under heterogeneous light environment[J]. Chin J Plant Ecol, 2022, 46(1): 88-101.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0206
Fig. 1 Schematic diagram of the experimental design of Indocalamus decorus clonal system exposed to different shading levels. 1:3, 2:2 and 3:1 referred to the ratio of shaded ramets to unshaded ones, respectively.
变异来源 Variation source | df | AQE | LCP | LSP | Pn max | Rd | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 26.7 | <0.001 | 19.1 | <0.001 | 24.6 | <0.001 | 8.7 | 0.001 | 12.2 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 6.3 | 0.017 | 7.5 | 0.010 | 32.4 | <0.001 | 5.3 | 0.027 | 0.1 | 0.763 |
处理时间 Treatment time (T) | 2, 53 | 79.6 | <0.001 | 59.8 | <0.001 | 255.6 | <0.001 | 151.6 | <0.001 | 16.7 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 9.0 | 0.001 | 1.8 | 0.181 | 3.5 | 0.042 | 0.9 | 0.420 | 9.7 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 4.6 | 0.004 | 3.9 | 0.010 | 2.4 | 0.073 | 0.3 | 0.896 | 2.8 | 0.041 |
遮光率×处理时间 S × T | 2, 53 | 8.3 | 0.001 | 14.2 | <0.001 | 1.4 | 0.261 | 4.8 | 0.014 | 34.0 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 7.1 | <0.001 | 5.0 | 0.002 | 7.3 | <0.001 | 1.5 | 0.213 | 3.2 | 0.025 |
Table 1 Statistical results of three-way ANOVA for leaf light response parameters of shaded ramets of Indocalamus decorus clonal system under heterogeneous light environment
变异来源 Variation source | df | AQE | LCP | LSP | Pn max | Rd | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 26.7 | <0.001 | 19.1 | <0.001 | 24.6 | <0.001 | 8.7 | 0.001 | 12.2 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 6.3 | 0.017 | 7.5 | 0.010 | 32.4 | <0.001 | 5.3 | 0.027 | 0.1 | 0.763 |
处理时间 Treatment time (T) | 2, 53 | 79.6 | <0.001 | 59.8 | <0.001 | 255.6 | <0.001 | 151.6 | <0.001 | 16.7 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 9.0 | 0.001 | 1.8 | 0.181 | 3.5 | 0.042 | 0.9 | 0.420 | 9.7 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 4.6 | 0.004 | 3.9 | 0.010 | 2.4 | 0.073 | 0.3 | 0.896 | 2.8 | 0.041 |
遮光率×处理时间 S × T | 2, 53 | 8.3 | 0.001 | 14.2 | <0.001 | 1.4 | 0.261 | 4.8 | 0.014 | 34.0 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 7.1 | <0.001 | 5.0 | 0.002 | 7.3 | <0.001 | 1.5 | 0.213 | 3.2 | 0.025 |
变异来源 Variation source | df | AQE | LCP | LSP | Pn max | Rd | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 31.6 | <0.001 | 10.3 | <0.001 | 76.5 | <0.001 | 28.9 | <0.001 | 32.5 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 38.4 | <0.001 | 41.6 | <0.001 | 33.1 | <0.001 | 3.8 | 0.062 | 8.1 | 0.007 |
处理时间 Treatment time (T) | 2, 53 | 174.6 | <0.001 | 55.8 | <0.001 | 120.9 | <0.001 | 270.9 | <0.001 | 117.5 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 0.9 | 0.427 | 6.0 | 0.006 | 3.2 | 0.054 | 2.6 | 0.089 | 10.2 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 2.7 | 0.048 | 4.1 | 0.008 | 8.1 | <0.001 | 5.5 | 0.001 | 2.3 | 0.080 |
遮光率×处理时间 S × T | 2, 53 | 3.0 | 0.064 | 34.2 | <0.001 | 15.5 | <0.001 | 9.9 | <0.001 | 2.3 | 0.110 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 0.3 | 0.909 | 8.1 | <0.001 | 15.6 | <0.001 | 4.1 | 0.008 | 2.5 | 0.059 |
Table 2 Statistical results of three-way ANOVA for leaf light response parameters of unshaded ramets of Indocalamus decorus clonal system under heterogeneous light environment
变异来源 Variation source | df | AQE | LCP | LSP | Pn max | Rd | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 31.6 | <0.001 | 10.3 | <0.001 | 76.5 | <0.001 | 28.9 | <0.001 | 32.5 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 38.4 | <0.001 | 41.6 | <0.001 | 33.1 | <0.001 | 3.8 | 0.062 | 8.1 | 0.007 |
处理时间 Treatment time (T) | 2, 53 | 174.6 | <0.001 | 55.8 | <0.001 | 120.9 | <0.001 | 270.9 | <0.001 | 117.5 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 0.9 | 0.427 | 6.0 | 0.006 | 3.2 | 0.054 | 2.6 | 0.089 | 10.2 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 2.7 | 0.048 | 4.1 | 0.008 | 8.1 | <0.001 | 5.5 | 0.001 | 2.3 | 0.080 |
遮光率×处理时间 S × T | 2, 53 | 3.0 | 0.064 | 34.2 | <0.001 | 15.5 | <0.001 | 9.9 | <0.001 | 2.3 | 0.110 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 0.3 | 0.909 | 8.1 | <0.001 | 15.6 | <0.001 | 4.1 | 0.008 | 2.5 | 0.059 |
Fig. 2 Light response characteristics of shaded ramets of Indocalamus decorus clonal system under heterogeneous light environment (mean ± SD). 1:3, 2:2 and 3:1 referred to the ratio of shaded ramets to unshaded ones, respectively. The shading rate is 50% and 75%, respectively. AQE, apparent quantum efficiency; LCP, light compensation point; LSP, light saturation point; Pn max, maximum net photosynthetic rate; Rd, dark respiration rate. Uppercase letters indicated the comparison between different treatment times for the same treatment; lowercase letters indicated the comparison between the different treatments at the same time, different letters represented significant difference at the level of p < 0.05.
Fig. 3 Light response characteristics of unshaded ramets of Indocalamus decorus clonal system under heterogeneous light environment (mean ± SD). 1:3, 2:2 and 3:1 referred to the ratio of shaded ramets to unshaded ones, respectively; 0% (50%), unshaded ramets connected to 50% shaded ramets; 0% (75%), unshaded ramets connected to 75% shaded ramets. AQE, apparent quantum efficiency; LCP, light compensation point; LSP, light saturation point; Pn max, maximum net photosynthetic rate; Rd, dark respiration rate. Uppercase letters indicated the comparison between the different treatment times for the same treatment; lowercase letters indicated the comparison between the different treatments at the same time, different letters represented significant difference at the level of p < 0.05.
变异来源 Variation source | df | Pn | Gs | Ci | Tr | WUE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 33.4 | <0.001 | 180.2 | <0.001 | 4.9 | 0.013 | 16.9 | <0.001 | 47.1 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 3.4 | 0.072 | 12.4 | 0.001 | 7.1 | 0.011 | 1.6 | 0.220 | 112.1 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 240.5 | <0.001 | 5 486.6 | <0.001 | 73.0 | <0.001 | 154.2 | <0.001 | 221.6 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 14.5 | <0.001 | 596.0 | <0.001 | 2.9 | 0.066 | 10.4 | <0.001 | 4.8 | 0.014 |
分株比例×处理时间 R × T | 4, 53 | 14.2 | <0.001 | 26.5 | <0.001 | 2.2 | 0.089 | 33.6 | <0.001 | 1.2 | 0.318 |
遮光率×处理时间 S × T | 2, 53 | 6.9 | 0.003 | 609.4 | <0.001 | 16.8 | <0.001 | 8.7 | 0.001 | 59.1 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 7.0 | <0.001 | 36.9 | <0.001 | 2.2 | 0.087 | 3.1 | 0.026 | 12.6 | <0.001 |
Table 3 Statistical results of three-way ANOVA for leaf photosynthetic parameters of shaded ramets of Indocalamus decorus clonal system under heterogeneous light environment
变异来源 Variation source | df | Pn | Gs | Ci | Tr | WUE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 33.4 | <0.001 | 180.2 | <0.001 | 4.9 | 0.013 | 16.9 | <0.001 | 47.1 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 3.4 | 0.072 | 12.4 | 0.001 | 7.1 | 0.011 | 1.6 | 0.220 | 112.1 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 240.5 | <0.001 | 5 486.6 | <0.001 | 73.0 | <0.001 | 154.2 | <0.001 | 221.6 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 14.5 | <0.001 | 596.0 | <0.001 | 2.9 | 0.066 | 10.4 | <0.001 | 4.8 | 0.014 |
分株比例×处理时间 R × T | 4, 53 | 14.2 | <0.001 | 26.5 | <0.001 | 2.2 | 0.089 | 33.6 | <0.001 | 1.2 | 0.318 |
遮光率×处理时间 S × T | 2, 53 | 6.9 | 0.003 | 609.4 | <0.001 | 16.8 | <0.001 | 8.7 | 0.001 | 59.1 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 7.0 | <0.001 | 36.9 | <0.001 | 2.2 | 0.087 | 3.1 | 0.026 | 12.6 | <0.001 |
变异来源 Variation source | df | Pn | Gs | Ci | Tr | WUE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 99.2 | <0.001 | 344.6 | <0.001 | 16.8 | <0.001 | 18.9 | <0.001 | 47.5 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 15.0 | <0.001 | 62.0 | <0.001 | 22.6 | <0.001 | 0.7 | 0.412 | 63.9 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 984.4 | <0.001 | 2 657.9 | <0.001 | 172.4 | <0.001 | 73.7 | <0.001 | 305.8 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 92.8 | <0.001 | 151.2 | <0.001 | 18.3 | <0.001 | 6.6 | 0.004 | 167.4 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 4.9 | 0.003 | 43.4 | <0.001 | 4.3 | 0.006 | 2.3 | 0.082 | 26.4 | <0.001 |
遮光率×处理时间 S × T | 2, 53 | 23.8 | <0.001 | 366.9 | <0.001 | 9.3 | 0.001 | 4.1 | 0.026 | 52.9 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 50.7 | <0.001 | 88.0 | <0.001 | 4.2 | 0.007 | 5.7 | 0.001 | 31.5 | <0.001 |
Table 4 Statistical results of three-way ANOVA for leaf photosynthetic parameters of unshaded ramets of Indocalamus decorus clonal system under heterogeneous light environment
变异来源 Variation source | df | Pn | Gs | Ci | Tr | WUE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 99.2 | <0.001 | 344.6 | <0.001 | 16.8 | <0.001 | 18.9 | <0.001 | 47.5 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 15.0 | <0.001 | 62.0 | <0.001 | 22.6 | <0.001 | 0.7 | 0.412 | 63.9 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 984.4 | <0.001 | 2 657.9 | <0.001 | 172.4 | <0.001 | 73.7 | <0.001 | 305.8 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 92.8 | <0.001 | 151.2 | <0.001 | 18.3 | <0.001 | 6.6 | 0.004 | 167.4 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 4.9 | 0.003 | 43.4 | <0.001 | 4.3 | 0.006 | 2.3 | 0.082 | 26.4 | <0.001 |
遮光率×处理时间 S × T | 2, 53 | 23.8 | <0.001 | 366.9 | <0.001 | 9.3 | 0.001 | 4.1 | 0.026 | 52.9 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 50.7 | <0.001 | 88.0 | <0.001 | 4.2 | 0.007 | 5.7 | 0.001 | 31.5 | <0.001 |
Fig. 4 Photosynthetic parameters of shaded ramets of Indocalamus decorus clonal system under heterogeneous light environment (mean ± SD). 1:3, 2:2 and 3:1 referred to the ratio of shaded ramets to unshaded ones, respectively. The shading rate is 50% and 75%, respectively. Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency. Uppercase letters indicated the comparison between the different treatment times for the same treatment; lowercase letters indicated the comparison between the different treatments at the same time, different letters represented significant difference at the level of p < 0.05.
Fig. 5 Photosynthetic parameters of unshaded ramets of Indocalamus decorus clonal system under heterogeneous light environment (mean ± SD). 1:3, 2:2, and 3:1 referred to the ratios of shaded ramets to unshaded ones, respectively. 0% (50%), unshaded ramets connected to 50% shading ramets; 0% (75%), unshaded ramets connected to 75% shading ramets. Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency. Uppercase letters indicated the comparison between the different treatment times for the same treatment; lowercase letters indicated the comparison between the different treatments at the same time, different letters represented significant difference at the level of p < 0.05.
变异来源 Variation source | df | Chl a | Chl b | Car | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 111.7 | <0.001 | 50.7 | <0.001 | 43.5 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 131.5 | <0.001 | 318.3 | <0.001 | 75.5 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 61.7 | <0.001 | 140.2 | <0.001 | 149.1 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 3.2 | 0.053 | 0.3 | 0.733 | 31.9 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 9.5 | <0.001 | 3.4 | 0.019 | 5.0 | 0.003 |
遮光率×处理时间 S × T | 2, 53 | 8.7 | 0.001 | 35.5 | <0.001 | 58.7 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 12.5 | <0.001 | 9.5 | <0.001 | 9.2 | <0.001 |
Table 5 Statistical results of three-way ANOVA for photosynthetic pigment content of shaded ramets of Indocalamus decorus clonal system under heterogeneous light environment
变异来源 Variation source | df | Chl a | Chl b | Car | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 111.7 | <0.001 | 50.7 | <0.001 | 43.5 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 131.5 | <0.001 | 318.3 | <0.001 | 75.5 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 61.7 | <0.001 | 140.2 | <0.001 | 149.1 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 3.2 | 0.053 | 0.3 | 0.733 | 31.9 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 9.5 | <0.001 | 3.4 | 0.019 | 5.0 | 0.003 |
遮光率×处理时间 S × T | 2, 53 | 8.7 | 0.001 | 35.5 | <0.001 | 58.7 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 12.5 | <0.001 | 9.5 | <0.001 | 9.2 | <0.001 |
变异来源 Variation source | df | Chl a | Chl b | Car | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 415.3 | <0.001 | 314.7 | <0.001 | 272.4 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 0.7 | 0.404 | 31.9 | <0.001 | 28.2 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 298.8 | <0.001 | 350.3 | <0.001 | 211.2 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 8.7 | 0.001 | 11.8 | <0.001 | 15.7 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 17.2 | <0.001 | 8.6 | <0.001 | 12.1 | <0.001 |
遮光率×处理时间 S × T | 2, 53 | 9.9 | <0.001 | 19.4 | <0.001 | 52.2 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 44.5 | <0.001 | 48.8 | <0.001 | 50.0 | <0.001 |
Table 6 Statistical results of three-way ANOVA for photosynthetic pigment content of unshaded ramets of Indocalamus decorus clonal system under heterogeneous light environment
变异来源 Variation source | df | Chl a | Chl b | Car | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
分株比例 Ramet ratio (R) | 2, 53 | 415.3 | <0.001 | 314.7 | <0.001 | 272.4 | <0.001 |
遮光率 Shading rate (S) | 1, 53 | 0.7 | 0.404 | 31.9 | <0.001 | 28.2 | <0.001 |
处理时间 Treatment time (T) | 2, 53 | 298.8 | <0.001 | 350.3 | <0.001 | 211.2 | <0.001 |
分株比例×遮光率 R × S | 2, 53 | 8.7 | 0.001 | 11.8 | <0.001 | 15.7 | <0.001 |
分株比例×处理时间 R × T | 4, 53 | 17.2 | <0.001 | 8.6 | <0.001 | 12.1 | <0.001 |
遮光率×处理时间 S × T | 2, 53 | 9.9 | <0.001 | 19.4 | <0.001 | 52.2 | <0.001 |
分株比例×遮光率×处理时间 R × S × T | 4, 53 | 44.5 | <0.001 | 48.8 | <0.001 | 50.0 | <0.001 |
Fig. 6 Photosynthetic pigment content of shaded ramets (A, C, E) and unshaded ramets (B, D, F) of Indocalamus decorus clonal system under heterogeneous light environment (mean ± SD). 1:3, 2:2 and 3:1 referred to the ratios of shaded ramets to unshaded ones, respectively. The shading rate is 50% and 75%, respectively. 0% (50%), unshaded ramets connected to 50% shaded ramets; 0% (75%), unshaded ramets connected to 75% shaded ramets. Chl a, chlorophyll a; Chl b, chlorophyll b; Car, carotenoid. Uppercase letters indicated the comparison between the different treatment times for the same treatment; lowercase letters indicated the comparison between the different treatments at the same time, different letters represented significant difference at the level of p < 0.05.
[1] |
Alagupalamuthirsolai M, Ankegowda SJ, Murugan M, Sivaranjani R, Rajkumar B, Akshitha HJ (2019). Influence of light intensity on photosynthesis, capsule yield, essential oil and insect pest incidence of small cardamom (Elettaria cardamomum (L.) Maton). Journal of Essential Oil Bearing Plants, 22, 1172-1181.
DOI URL |
[2] | Chen LY, Xie DJ, Rong JD, Lai JL, Lin XL, Zheng YS (2019). Effects of photosynthetic pigment content on photosynthetic characteristics of different leaf color phenotypes of Sinobambusa tootsik f. luteoloalbostriata. Scientia Silvae Sinicae, 55(12), 21-31. |
[ 陈凌艳, 谢德金, 荣俊冬, 赖金莉, 林雪玲, 郑郁善 (2019). 光合色素含量差异对花叶唐竹不同叶色表型光合特性的影响. 林业科学, 55(12), 21-31.] | |
[3] | Chen XL, Song HX (2018). Effects of clonal integration on patterns of nitrogen allocated to photosystem in Phyllostachys bissetii under heterogeneity light environment. Guihaia, 38, 1651-1659. |
[ 陈旭黎, 宋会兴 (2018). 异质光环境下克隆整合对白夹竹光合氮分配格局的影响. 广西植物, 38, 1651-1659.] | |
[4] |
Constable JVH, Peffer BJ, DeNicola DM (2007). Temporal and light-based changes in carbon uptake and storage in the spring ephemeral Podophyllum peltatum (Berberidaceae). Environmental and Experimental Botany, 60, 112-120.
DOI URL |
[5] |
Dong M (1995). Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia, 101, 282-288.
DOI URL |
[6] |
Dong M, Alaten B (1999). Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China. Plant Ecology, 141, 53-58.
DOI URL |
[7] | Du L, Xia J, Li HH, Wu W, Chen L, Zhang W, Chen S, Xie JZ (2019). Light response process and simulation of Dendrocalamopsis oldhami in the process of gradual water loss. Chinese Journal of Applied Ecology, 30, 2011-2020. |
[ 杜澜, 夏捷, 李海花, 吴炜, 陈亮, 张玮, 陈胜, 谢锦忠 (2019). 逐步失水过程中绿竹光响应进程及其拟合. 应用生态学报, 30, 2011-2020.] | |
[8] | Fu XQ, Wang M (2014). Compensatory growth of plant in Trifolium repens and Lolium perenne grassland under different stubble heights. Pratacultural Science, 31, 927-934. |
[ 付秀琴, 王梅 (2014). 留茬高度对黑麦草+白三叶草地植物补偿性生长的影响. 草业科学, 31, 927-934.] | |
[9] | Gao ZW (2018). Study on the Clonal Integration of 5 Dwarf Bamboos Under Different Light Intensity. Master degree dissertation, Sichuan Agricultural University, Chengdu. 66-68. |
[ 高忠文 (2018). 不同光强下5种地被竹的克隆整合作用研究. 硕士学位论文, 四川农业大学, 成都. 66-68.] | |
[10] |
Han CM, Xi DG, Guo WB, Bai B, Li YP, Hu AA, You WH (2020). The effects of clonal integration on two ecotypes of Alternanthera philoxeroides under heterogeneous resource conditions. Botanical Research, 9, 354-361.
DOI URL |
[ 韩翠敏, 奚道国, 郭文兵, 白冰, 李燕萍, 胡安安, 游文华 (2020). 异质性资源条件下克隆整合对两种生态型喜旱莲子草的影响. 植物学研究, 9, 354-361.] | |
[11] | Hu JJ (2015). Research on the Characteristic Water Physiological Integration of Indocalamus decorus in Heterogeneous Water Environment. Master degree dissertation, Central South University of Forestry and Technology, Changsha. 36-44. |
[ 胡俊靖 (2015). 异质水分环境下美丽箬竹生理整合特性研究. 硕士学位论文, 中南林业科技大学, 长沙. 36-44.] | |
[12] | Jiang XX, Dong BC, Luo FL, Zhu R, Xu XY, Li HL, Yu FH (2014). Effects of light intensity contrast on clonal integration of Spartina anglica. Chinese Journal of Applied Ecology, 25, 2826-2832. |
[ 姜星星, 董必成, 罗芳丽, 朱锐, 徐希一, 李红丽, 于飞海 (2014). 光强对比度对大米草克隆整合作用的影响. 应用生态学报, 25, 2826-2832.] | |
[13] | Li HS (2000). Principles and Techniques of Plant Physiology and Biochemistry. Higher Education Press, Beijing. |
[ 李合生 (2000). 植物生理生化原理和技术. 高等教育出版社, 北京.] | |
[14] |
Li X, Wu T, Cheng Y, Tan ND, Jiang F, Liu SZ, Chu GW, Meng Z, Liu JX (2020). Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming. Chinese Journal of Plant Ecology, 44, 1203-1214.
DOI URL |
[ 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀 (2020). 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较. 植物生态学报, 44, 1203-1214.] | |
[15] | Li Y, Chen JS, Xue G, Peng YY, Song HX (2018). Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light. Science of the Total Environment, 628- 629, 594-602. |
[16] |
Lin KH, Shih FC, Huang MY, Weng JH (2020). Physiological characteristics of photosynthesis in yellow-green, green and dark-green Chinese kale (Brassica oleracea L. var. alboglabra Musil.) under varying light intensities. Plants, 9, 960. DOI: 10.3390/plants9080960.
DOI URL |
[17] |
Liu FJ, Li YX, Liao YM, Chen JS, Quan QM, Gong XY (2011). Effects of clonal integration on growth of stoloni- ferous herb Centella asiatica suffering from heterogeneous heavy metal Cd2+ stress. Chinese Journal of Plant Ecology, 35, 864-871.
DOI URL |
[ 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越 (2011). 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响. 植物生态学报, 35, 864-871.]
DOI |
|
[18] |
Liu XM, Yang XF, Wang X, Zhang SR (2019). Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad-leaved forest. Chinese Journal of Plant Ecology, 43, 197-207.
DOI URL |
[ 刘校铭, 杨晓芳, 王璇, 张守仁 (2019). 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应. 植物生态学报, 43, 197-207.]
DOI |
|
[19] | Long HY, Gu XP, Yuan N, Yue JJ, Lou C (2014). Microstructure and light-response parameters of flowering bamboo (Phyllostachys iridescens) blades. Plant Science Journal, 32, 273-278. |
[ 龙海艳, 顾小平, 袁娜, 岳晋军, 楼崇 (2014). 开花红哺鸡竹叶片的显微结构与光响应参数研究. 植物科学学报, 32, 273-278.] | |
[20] | Murchie EH, Horton P (1998). Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant, Cell & Environment, 21, 139-148. |
[21] | Qiao YN, Liu K, Deng ZW, Xu LZ, Su JL, Rong JD, Chen LG (2020). Photosynthetic characteristics of Phyllostachys edulis under different water and fertilizer coupling treatment. Chinese Journal of Tropical Crops, 41, 2253-2258. |
[ 乔一娜, 刘凯, 邓智文, 徐林政, 苏建霖, 荣俊冬, 陈礼光 (2020). 不同水肥耦合处理下毛竹光合特性. 热带作物学报, 41, 2253-2258.] | |
[22] |
Roiloa SR, Retuerto R (2005). Presence of developing ramets of Fragaria vesca L. increases photochemical efficiency in parent ramets. International Journal of Plant Sciences, 166, 795-803.
DOI URL |
[23] |
Roiloa SR, Rodríguez-Echeverría S, Freitas H, Retuerto R (2013). Developmentally-programmed division of labour in the clonal invader Carpobrotus edulis. Biological Invasions, 15, 1895-1905.
DOI URL |
[24] | Saitoh T, Seiwa K (2007). Physiological integration of clonal plants: resource acquiring strategies in clonal fragments of a dwarf bamboo,Sasa palmata. Japanese Journal of Ecology, 57, 229-237. |
[25] |
Saitoh T, Seiwa K, Nishiwaki A (2002). Importance of physiological integration of dwarf bamboo to persistence in forest understorey: a field experiment. Journal of Ecology, 90, 78-85.
DOI URL |
[26] |
Saitoh T, Seiwa K, Nishiwaki A (2006). Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata: an isotopic (15N) assessment. Annals of Botany, 98, 657-663.
DOI URL |
[27] |
Song YB, Yu FH, Keser LH, Dawson W, Fischer M, Dong M, Kleunen M (2013). United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia, 171, 317-327.
DOI URL |
[28] |
Stuefer JF, During HJ,de Kroon H (1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. Journal of Ecology, 82, 511.
DOI URL |
[29] |
Sugiura S, Takahashi S (2021). Physiological integration for salinity stress alleviation in stoloniferous turfgrass, Zoysia matrella in heterogeneous saline environments. Landscape and Ecological Engineering, 17, 21-28.
DOI URL |
[30] | Sun XL, Xu YF, Ma LY, Zhou H (2010). A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 34, 989-999. |
[ 孙小玲, 许岳飞, 马鲁沂, 周禾 (2010). 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 34, 989-999.]
DOI |
|
[31] |
Tomimatsu H, Matsuo A, Kaneko Y, Kudo E, Taniguchi R, Saitoh T, Suyama Y, Makita A (2020). Spatial genet dynamics of a dwarf bamboo: clonal expansion into shaded forest understory contributes to regeneration after an episodic die-off. Plant Species Biology, 35, 185-196.
DOI URL |
[32] |
Urban L, Montpied P, Normand F (2006). Season effects on leaf nitrogen partitioning and photosynthetic water use efficiency in mango. Journal of Plant Physiology, 163, 48-57.
DOI URL |
[33] |
van Kleunen MV, Fischer M, Schmid B (2002). Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution, 56, 2168-2177.
PMID |
[34] |
Wang GL, Chen YZ, Fan HY, Huang P (2020). Effects of light-emitting diode (LED) red and blue light on the growth and photosynthetic characteristics of Momordica charantia L. Journal of Agricultural Chemistry and Environment, 10, 1-15.
DOI URL |
[35] |
Wang P, Alpert P, Yu FH (2021). Physiological integration can increase competitive ability in clonal plants if competition is patchy. Oecologia, 195, 199-212.
DOI PMID |
[36] |
Wang ZW (2007). Temporal variation of water-soluble carbohydrate in the rhizome clonal grass Leymus chinensis in response to defoliation. Chinese Journal of Plant Ecology, 31, 673-679.
DOI URL |
[ 王正文 (2007). 根茎克隆植物羊草体内可溶性碳水化合物的时间变异及其对去叶干扰的响应. 植物生态学报, 4, 673-679.] | |
[37] |
Xu CY, Schooler SS,van Klinken RD (2010). Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. Journal of Ecology, 98, 833-844.
DOI URL |
[38] | Yang SQ, Yang ZQ, Cai X, Wang L, Zhou XD (2018). Simulation of light response of photosynthesis for greenhouse tomato leaves under high temperature and high humidity stress. Chinese Journal of Ecology, 37, 2003-2012. |
[ 杨世琼, 杨再强, 蔡霞, 王琳, 周晓东 (2018). 高温高湿胁迫下设施番茄光响应曲线的拟合. 生态学杂志, 37, 2003-2012.] | |
[39] |
Ye XH, Xue JG, Xie XF, Huang ZY (2020). Effects of different disturbances on plant growth and content of main medicinal ingredients of rhizomatous clonal plant Glycyrrhiza uralensis in a natural population. Chinese Journal of Plant Ecology, 44, 951-961.
DOI URL |
[ 叶学华, 薛建国, 谢秀芳, 黄振英 (2020). 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响. 植物生态学报, 44, 951-961.] | |
[40] |
Yue CL, Chang J, Wang KH, Zhu YM (2004). Response of clonal growth in Phyllostachys praecox f. prevernalis to changing light intensity. Australian Journal of Botany, 52, 171-174.
DOI URL |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 307
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 589
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn