Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (3): 197-207.doi: 10.17521/cjpe.2018.0303

• Research Articles • Previous Articles     Next Articles

Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest

LIU Xiao-Ming1,2,YANG Xiao-Fang1,2,WANG Xuan1,2,ZHANG Shou-Ren1,*()   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-11-30 Revised:2019-02-22 Online:2019-04-23 Published:2019-03-20
  • Contact: ZHANG Shou-Ren
  • Supported by:
    Supported by the National Key R&D Program of China(2016YFA0600802);The Science and Technology Project of Beijing(Z171100004417019)


Aims Warm-temperate deciduous broad-leaved forest plays an important role in maintaining regional ecosystem function and balance. To explore the growth and eco-physiological response to nitrogen (N) addition will deepen our understanding of its dynamic development under the scenario of global N deposition.

Methods A simulated N deposition experiment was established with four N addition plots (100 kg·hm -2·a -1) and four control plots in a deciduous broad-leaved forest in Dongling Mountain, Beijing. The responses of branch growth, photosynthesis, chlorophyll fluorescence and seed mass of dominant species Quercus wutaishanica and associate species Acer pictum subsp. mono to N addition were investigated.

Important findings Net photosynthetic rate, transpiration rate, and chlorophyll content were enhanced by the N addition. Furthermore, the N addition also enlarged the electron transport pool in photosystem II reaction center and increased the turnover number of the primary quinone acceptor (QA) reduction expressed by fast chlorophyll fluorescence method of JIP test in both species. The N addition also increased the length and biomass of the current year branches of the two tree species and improved the seed quality of Q. wutaishanica to a certain extent. In general, we observed more pronounced responses of photosynthetic nitrogen use efficiency, and branch biomass formation to N addition in Q. wutaishanica compared with A. pictum subsp. mono. Our results suggested that the dominant position of Q. wutaishanica should be further highlighted under increased N deposition scenario in the warm-temperate deciduous broad-leaved forest in Dongling Mountain.

Key words: nitrogen deposition, warm-temperate deciduous broad-leaved forest, photosynthesis, chlorophyll fluorescence, growth


性状 Trait 氮 N 树种 Species 氮 × 树种 N × Species
净光合速率 Net photosynthetic rate (Pn) *** *** ***
气孔导度 Stomatal conductance (Gs) *** *** ***
蒸腾速率 Transpiration rate (Tr) *** *** ***
水分利用效率 Water use Efficiency (WUE) ns ns ns
叶绿素含量 Chlorophyll contents (Chl) *** *** ns
光系统II最大光化学效率 Maximal PSII efficiency (PHI(Po)) ns ns ns
光系统II电子传递链电子受体库大小 PSII size of QA pool (Sm) *** ns ns
初级醌受体被还原周转次数 PSII QA reduced turn over number (N) *** ** ns
光合氮利用效率 Photosynthetic nitrogen use efficiency (PNUE) ns ns **
当年生枝长度 Length of current year branch *** * ns
当年生枝生物量 Biomass of current year branch * *** ns
辽东栎种子质量 Quercus wutaishanica seed mass ns - -

Fig. 1

Seasonal changes of net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of Quercus wutaishanica (A-D) and Acer pictum subsp. mono (E-H) in Dongling Mountain in response to nitrogen treatment (mean ± SD). ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05."

Fig. 2

Seasonal changes of chlorophyll content (Chl) of Quercus wutaishanica (A) and Acer pictum subsp. mono (B) in response to nitrogen treatment (mean ± SD). **, p < 0.01; *, p < 0.05; ns, p > 0.05."

Fig. 3

Seasonal changes of maximal PSII efficiency (PHI(Po)), size of QA pool (Sm) and the QA reduced turnover number (N) of Quercus wutaishanica (A-C) and Acer pictum subsp. mono (D-F) in response to nitrogen treatment (mean ± SD). **, p < 0.01; *, p < 0.05; ns, p > 0.05. Data measured in July were missed due to instrument disorder."

Fig. 4

Effects of nitrogen addition, tree species and their interaction on photosynthetic nitrogen efficiency (PNUE)(A), length (B) and biomass (C) of the current-year branch of the two tree species, and effect of nitrogen addition on single seed mass (D) of Quercus wutaishanica (mean ± SD). Different lowercase letters indicate significant difference (p < 0.05)."

[1] Aber J, Mcdowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M ( 1998). Nitrogen saturation in temperate forest ecosystems hypotheses revisited. Bioscience, 48, 921-934.
[2] Andersson F, Fagerström T, Nilsson SI ( 1980). Forest ecosystem responses to acid deposition hydrogen ion budget and nitrogen/tree growth model approaches. In: Hutchinson TC, Havas M eds. Effects of Acid Precipitation on Terrestrial Ecosystems. Springer,Boston. 319-334.
[3] Bauer GA, Berntson GM, Bazzaz FA ( 2010). Regenerating temperate forests under elevated CO2 and nitrogen deposition: Comparing biochemical and stomatal limitation of photosynthesis. New Phytologist, 152, 249-266.
[4] Bedison JE, Mcneil BE ( 2009). Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology, 90, 1736-1742.
[5] Chen DK, Shi JC, Wang YH, Chen XQ ( 1984). Forest site classification and forest productivity classification and evaluation of secondary forest in Maoer Mountains. Journal of Northeast Forestry University, 12(1), 1-18.
[ 陈大珂, 石家琛, 王义弘, 陈喜全 ( 1984). 森林立地分类与森林生产力——帽儿山次生林立地分类和评价. 东北林业大学学报, 12(1), 1-18.]
[6] Chen LZ ( 1997). The importance of Donglin Mountain region of warm temperate deciduous broad-leaved forest. In: Chen LZ ed. The Study on Structure and Function of Forest in Warm Temperate Zone. Science Press, Beijing. 1-9.
[ 陈灵芝 ( 1997). 东灵山地区在暖温带落叶阔叶林区域的地位. 见: 陈灵芝编. 暖温带森林生态系统结构与功能的研究. 科学出版社, 北京. 1-9.]
[7] Fang H, Mo JM ( 2006). Effects of nitrogen deposition on forest litter decomposition. Acta Ecologica Sinica, 26, 3127-3136.
[ 方华, 莫江明 ( 2006). 氮沉降对森林凋落物分解的影响. 生态学报, 26, 3127-3136.]
[8] Fang YT, Mo JM, Gundersen P, Zhou GY, Li DJ ( 2004). Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: A review. Acta Ecologica Sinica, 24, 1523-1531.
[ 方运霆, 莫江明, Per Gundersen, 周国逸, 李德军 ( 2004). 森林土壤氮素转换及其对氮沉降的响应. 生态学报, 24, 1523-1531.]
[9] Fang YT, Mo JM, Zhou GY, Xue JH ( 2005). Responses of diameter at breast height increment to N addition in forests of Dinghushan Biosphere Reserve. Journal of Tropical and Subtropical Botany, 13, 198-204.
[ 方运霆, 莫江明, 周国逸, 薛璟花 ( 2005). 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 13, 198-204.]
[10] Feng Y, Ma KM, Zhang YX, Qi J, Zhang JY ( 2007). Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica, 27, 4743-4750.
[ 冯云, 马克明, 张育新, 祁建, 张洁瑜 ( 2007). 北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布. 生态学报, 27, 4743-4750.]
[11] Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ ( 2003). The nitrogen cascade. Bioscience, 53, 341-356.
[12] Galloway JN, Cowling EB, Seitzinger SP, Socolow RH ( 2002). Reactive nitrogen: Too much of a good thing? Ambio, 31, 60-63.
[13] Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA ( 2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226.
[14] Galloway JN, Townsend AR, Jan Willem E, Mateete B, Zucong C, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
[15] Garcia MO, Ovasapyan T, Greas M, Treseder KK ( 2008). Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil, 303, 301-310.
[16] Gu BJ, Ge Y, Ren Y, Xu B, Chong F, Luo WD, Jiang H, Gu BH, Chang J ( 2012). Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environmental Science & Technology, 46, 9420-9427.
[17] Güsewell S ( 2010). High nitrogen: Phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologist, 166, 537-550.
[18] Hikosaka K, Shigeno A ( 2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 160, 443-451.
[19] Högberg P, Fan H, Quist M, Binkley D, Tamm CO ( 2010). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499.
[20] Holland EA, Dentener FJ, Braswell BH, Sulzman JM ( 1999). Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 46, 7-43.
[21] Jia S, Wang Z, Li X, Zhang X, Mclaughlin NB ( 2011). Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 31, 718-726.
[22] Johnson GN, Scholes JD, Horton P, Young AJ ( 1993). Relationships between carotenoid composition and growth habit in British plant species. Plant, Cell & Environment, 16, 681-686.
[23] Kurts P, Andrewj B, Donaldr Z, Alanf T ( 2008). Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology, 14, 142-153.
[24] Lebauer DS, Treseder KK ( 2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
[25] Li JX, Li F ( 2012). Characterization of chemical compounds of rainfall samples collected in a sand-storm process in Beijing. China Environmental Science, 32, 2149-2154.
[ 李金香, 李峰 ( 2012). 北京市一次沙尘过程中降水化学组分的监测分析. 中国环境科学, 32, 2149-2154.]
[26] Li PM, Gao HY, Strasser RJ ( 2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 31, 559-566.
[ 李鹏民, 高辉远 Reto J. Strasser , ( 2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.]
[27] Li QJ, Yin LM, Wang LH, Liu Y ( 2010). Effects of simulated nitrogen deposition under different soil moistures on fruiting of Xanthoceras sorbifolia. Liaoning Forestry Science and Technology, ( 3), 1-3.
[ 李庆军, 阴黎明, 王力华, 刘阳 ( 2010). 不同土壤水分条件下模拟氮沉降对文冠果结实的影响. 辽宁林业科技, ( 3), 1-3.]
[28] Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS ( 2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
[29] Liu XZ, Wang GA, Li JZ, Wang Q ( 2009). Nitrogen isotope composition of modern plants in Dongling Mountain area of Beijing and its response to altitude gradient. Science in China Series D-Earth Sciences, 10, 1347-1359.
[ 刘贤赵, 王国安, 李嘉竹, 王庆 ( 2009). 北京东灵山地区现代植物氮同位素组成及其对海拔梯度的响应. 中国科学D辑:地球科学, 10, 1347-1359.]
[30] Liu YC, Yu GR, Wang QF, Zhang YJ , ( 2012). Huge carbon sequestration potential in global forests. Journal of Resources and Ecology, 3(3), 193-201.
[31] Lu XK, Mao QG, Gilliam FS, Luo Y, Mo JM ( 2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801.
[32] Lu XK, Mo JM, Gilliam FS, Yu G, Wei Z, Fang YT, Huang J ( 2011). Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China. Environmental Pollution, 159, 2228-2235.
[33] Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT ( 2010). Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688-2700.
[34] Luo XS, Liu P, Tang AH, Liu JY, Zong XY, Zhang Q, Kou CL, Zhang LJ, Fowler D, Fangmeier A, Christie P, Zhang FS, Liu XJ ( 2013). An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics. Atmospheric Environment, 74, 209-216.
[35] Ma SY, Verheyen K, Props R, Wasof S, Vanhellemont M, Boeckx P, Boon N, de Frenne1 P ( 2018). Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest. Functional Ecology, 32, 1293-1303.
[36] Mariana V, Campanello PI, Bucci SJ, Guillermo G ( 2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree physiology, 33, 1308-1318.
[37] Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K ( 2009). Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Functional Plant Biology, 36, 20-36.
[38] Mo JM, Brown S, Peng S, Kong G ( 2003). Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. Forest Ecology and Management, 175, 573-583.
[39] Mo JM, Fang YT, Lin ED, Li YE ( 2006). Soil N2O emission and its response to simulated N deposition in the main forests of Dinghushan in subtropical China. Journal of Plant Ecology (Chinese version), 30, 901-910.
[ 莫江明, 方运霆, 林而达, 李玉娥 ( 2006). 鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应. 植物生态学报, 30, 901-910.]
[40] Mo JM, Xue JH, Fang YT ( 2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413-1420.
[ 莫江明, 薛璟花, 方运霆 ( 2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413-1420.]
[41] Nave LE, Gough CM, Maurer KD, Bohrer G, Hardiman BS, Moine L ( 2015). Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research Biogeosciences, 116, 332-335.
[42] Palmroth S, Bach LH, Nordin A, Palmqvist K ( 2014). Nitrogen-‌addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia, 175, 457-470.
[43] Pan YP, Wang YS, Tan GQ, Wu D ( 2012). Spatial distribution and seasonal variations of atmospheric sulfur deposition over northern China. Atmospheric Chemistry and Physics Discussions, 12, 23645-23677.
[44] Peng LQ, Jing ZX, Wang Q ( 2014). Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings. Chinese Journal of Ecology, 33, 989-995.
[ 彭礼琼, 金则新, 王强 ( 2014). 模拟氮沉降对夏蜡梅幼苗生理生态特性的影响. 生态学杂志, 33, 989-995.]
[45] Pérez-Soba M, Stulen I, Eerden LJMVD ( 2010). Effect of atmospheric ammonia on the nitrogen metabolism of Scots pine (Pinus sylvestris) needles. Physiologia Plantarum, 90, 629-636.
[46] Quan Q, Zhang Z, He NP, Su HX, Wen XF, Sun XM ( 2015). Short-term effect of nitrogen addition on soil respiration of three temperate forests in Dongling Mountain. Chinese Journal of Ecology, 34, 797-804
[ 全权, 张震, 何念鹏, 苏宏新, 温学发, 孙晓敏 ( 2015). 短期氮添加对东灵山三种森林土壤呼吸的影响. 生态学杂志, 34, 797-804.]
[47] Shen JL, Tang AH, Liu XJ, Fangmeier A, Goulding KTW, Zhang FS ( 2009). High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environmental Pollution, 157, 3106-3113.
[48] Shen YG, Ye JY ( 1991). Relationship between dynamics of Thylakoid Membrane and energy transduction. Plant Physiology Journal, 17, 109-112.
[49] Strasser RJ, Srivastava A , Govindjee ( 1995). Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria photochem photobiol. Photochemistry and Photobiology, 61, 32-42.
[50] Strasser RJ, Tsimilli-Michael M, Srivastava A ( 2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence Advances in Photosynthesis and Respiration. Springer, Dordrecht. 321-326.
[51] Sun SZ ( 1997). The characteristics of the geology, geomorphology, and soils in Dongling Mountain region. In: Chen LZ ed. The Study on Structure and Function of Forest in Warm Temperate Zone. Science Press,Beijing. 10-27.
[ 孙世洲 ( 1997). 东灵山地区的地质、地貌和土壤. 见: 陈灵芝编. 温带森林生态系统结构与功能的研究. 科学出版社, 北京. 10-27.]
[52] Sun XL, Xu YF, Ma LY, Zhou H ( 2010). A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 34, 989-999.
[ 孙小玲, 许岳飞, 马鲁沂, 周禾 ( 2010). 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 34, 989-999.]
[53] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D ( 1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737-750.
[54] Wang DZ, Nie LS, Li JY ( 2006). Transfer characteristics of nutrient elements through hydrological process of Pinus tabulaeformis stand in Beijing Xishan area. Acta Ecologica Sinica, 26, 2101-2107.
[ 王登芝, 聂立水, 李吉跃 ( 2006). 北京西山地区油松林水文过程中营养元素迁移特征. 生态学报, 26, 2101-2107.]
[55] Wang M, Shi S, Lin F, Hao ZQ, Jiang P, Dai GH ( 2012). Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLOS ONE, 7, e30754. DOI: 10.1371/journal.pone.0030754.
[56] Wang XA, Wang ZG, Xiao YP ( 2004). Studies on the reproductive strategy of Larix chinensis I fecundity and seed weight. Journal of Lanzhou University (Natural Sciences), 40, 72-75.
[ 王孝安, 王志高, 肖娅萍 ( 2004). 太白红杉种群生殖对策研究I生育力和种子重量. 兰州大学学报(自然科学版), 40, 72-75.]
[57] Xiang F, Li W, Liu HY, Zhou LY, Jiang CJ ( 2018). Characteristics of photosynthetic and chlorophyll fluorescence of tea varieties under different nitrogen application levels. Acta Botanica Boreali-Occidentalia Sinica, 36, 1138-1145.
[ 向芬, 李维, 刘红艳, 周凌云, 江昌俊 ( 2018). 氮素水平对不同品种茶树光合及叶绿素荧光特性的影响. 西北植物学报, 36, 1138-1145.]
[58] Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, Zhang Y, Li KH, Wu QH, Yang DW, Zhang YY, Xue J, Li WQ, Li QQ, Tang L, Lu SH, Liang T, Tong YA, Liu P, Zhang Q, Xiong ZQ, Shi XJ, Wu LH, Shi WQ, Tian K, Zhong XH, Shi K, Tang QY, Zhang LJ, Huang JL, He CE, Kuang FH, Zhu B, Liu H, Jin X, Xin YJ, Shi XK, Du EZ, Dore AJ, Tang S, Collett JL, Goulding K, Sun YX, Ren J, Zhang FS, Liu XJ ( 2015). Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15, 12345-12360.
[59] Yang WQ, Liu SH, Miao M, Gao XD, Chen XY ( 2016). Spatial and temporal variation of dissolved inorganic nitrogen deposition along an urban to rural transect in Beijing. Acta Scientiae Circumstantiae, 36, 1530-1538.
[ 杨文琴, 刘思慧, 苗淼, 高晓栋, 陈锡云 ( 2016). 北京市内到郊区氮沉降时空变化特征. 环境科学学报, 36, 1530-1538.]
[60] Yin X, Zhang LJ, Liu XJ, Xu W, Ni YX, Liu XY ( 2017). Nitrogen deposition in suburban croplands of Hebei Plain. Scientia Agricultura Sinica, 50, 698-710.
[ 尹兴, 张丽娟, 刘学军, 许稳, 倪玉雪, 刘新宇 ( 2017). 河北平原城市近郊农田大气氮沉降特征. 中国农业科学, 50, 698-710.]
[61] Zhang JH, Tang ZY, Shen HH, Fang JY ( 2017). Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 41, 71-80.
[ 张建华, 唐志尧, 沈海花, 方精云 ( 2017). 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报, 41, 71-80.]
[62] Zhang SR, Gao RF, Wang LJ ( 2004). Response of oxygen evolution activity of photosystem II, photosynthetic pigments and chloroplast ultrastructure of hybrid poplar clones to light stress. Acta Phytoecologica Sinica, 28, 143-149.
[ 张守仁, 高荣孚, 王连军 ( 2004). 杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应. 植物生态学报, 28, 143-149.]
[63] Zhang Y, Song L, Liu XJ, Li WQ, Lü SH, Zheng LX, Bai ZC, Cai GY, Zhang FS ( 2012). Atmospheric organic nitrogen deposition in China. Atmospheric Environment, 46, 195-204.
[64] Zheng X, Jiang LB, Deng BL, Liu Q, Liu XS, Zheng LY, Guo XM, Liu YQ, Zhang L ( 2018). Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera. Acta Agriculturae Zhejiangensis, 30, 248-254.
[ 郑翔, 江亮波, 邓邦良, 刘倩, 刘喜帅, 郑利亚, 郭晓敏, 刘苑秋, 张令 ( 2018). UV-B辐射增强和氮沉降对不同种源地乌桕叶绿素荧光参数的影响. 浙江农业学报, 30, 248-254.]
[65] Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX ( 2002). The Asian nitrogen cycle case study. Ambio, 31, 79-87.
[66] Zhu FF, Yoh M, Gilliam FS, Lu XK, Mo JM ( 2013). Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: Insights from fine root responses to nutrient additions. PLOS ONE, 8, e82661. DOI: 10.1371/journal.pone.0082661.
[1] Qing-Hua GUO Yu TianHU qin Ma Kexin Xu Qiuli Yang Qianhui Sun Yumei Li Yanjun Su. The Advances for the New Remote Sensing Technology in Ecosystem Ecology Research [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] Manling Wu,Lan Yao,Xunru Ai,Jiang Zhu,Qiang Zhu,Jin Wang,Xiao Huang,Jianfeng Hong. The reproductive characteristics of core germplasm in a native Metasequoia glyptostroboides population [J]. Biodiv Sci, 2020, 28(3): 303-313.
[3] Zhang Yang,Liu Huajie,Xue Ruili,Li Haixia,Li Hua. Cloning of Wheat TaLCD Gene and Its Regulation on Osmotic Stress [J]. Chin Bull Bot, 2020, 55(2): 137-146.
[4] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[5] Wang Jindong,Zhou Yu,Yu Jiawen,Fan Xiaolei,Zhang Changquan,Li Qianfeng,Liu Qiaoquan. Advances in the Regulation of Plant Growth and Development and Stress Response by miR172-AP2 Module [J]. Chin Bull Bot, 2020, 55(2): 205-215.
[6] Wang Menglong,Peng Xiaoqun,Chen Zhufeng,Tang Xiaoyan. Research Advances on Lectin Receptor-like Kinases in Plants [J]. Chin Bull Bot, 2020, 55(1): 96-105.
[7] Li Ping,Dong Yahui,Li Chenglong,He Yulong,Li Mingjun. Optimization of Cell Suspension Culture Conditions of Achyranthes bidentata [J]. Chin Bull Bot, 2020, 55(1): 90-95.
[8] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[9] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[10] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[11] Guo Qianqian, Zhou Wenbin. Advances in the Mechanism Underlying Plant Response to Stress Combination [J]. Chin Bull Bot, 2019, 54(5): 662-673.
[12] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[13] Ma Hongxiu,Wang Kaiyong,Zhang Kaixiang,Meng Chunmei,An Mengjie. Effect of Cottonseed Meal on Cotton Physiology and Growth Compensation Under Salinity-alkalinity Stress [J]. Chin Bull Bot, 2019, 54(2): 208-216.
[14] WANG Zhao-Guo, WANG Chuan-Kuan. Mechanisms of carbon source-sink limitations to tree growth [J]. Chin J Plant Ecol, 2019, 43(12): 1036-1047.
[15] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .