Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1393-1405.DOI: 10.17521/cjpe.2023.0370 cstr: 32100.14.cjpe.2023.0370
Special Issue: 生物多样性
• Reviews • Next Articles
ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping*()(
), LI Long
Received:
2023-12-11
Accepted:
2024-06-14
Online:
2024-11-20
Published:
2024-06-17
Contact:
ZHANG Wei-Ping (zhangwp@cau.edu.cn)
Supported by:
ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability[J]. Chin J Plant Ecol, 2024, 48(11): 1393-1405.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0370
Fig. 1 Effect of plant diversity on content and components of soil organic carbon. [1] Ravenek et al. (2014), Wu et al. (2024); [2] Li et al. (2007, 2016), Panchal et al. (2022); [3] Fornara & Tilman (2008), Zhang et al. (2023); [4] Surigaoge et al. (2024); [5] Prommer et al. (2020); [6] Tian et al. (2019); [7] Lange et al. (2015); [8] Liang et al. (2017); [9] Engedal et al. (2023); [10] Lavallee et al. (2020).
Fig. 2 Mechanisms underlying the effects of plant diversity on stability of soil organic carbon. [1] Bronick & Lal (2005); [2] Gould et al. (2016); [3] Tian et al. (2023); [4] Li et al. (2004); [5] Furey & Tilman (2021); [6] Xiao et al. (2023); [7] Fornara & Tilman (2008), Surigaoge et al. (2024); [8] Zhang et al. (2023); [9] Barnes et al. (2020); [10] Rui et al. (2022); [11] Liang et al. (2017).
[1] | Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, et al.(2020). Towards a global-scale soil climate mitigation strategy. Nature Communications, 11, 5427. DOI: 10.1038/s41467-020-18887-7. |
[2] | Barnes AD, Scherber C, Brose U, Borer ET, Ebeling A, Gauzens B, Giling DP, Hines J, Isbell F, Ristok C, Tilman D, Weisser WW, Eisenhauer N (2020). Biodiversity enhances the multitrophic control of arthropod herbivory. Science Advances, 6, eabb6603. DOI: 10.1126/sciadv.abb6603. |
[3] | Bronick CJ, Lal R (2005). Soil structure and management: a review. Geoderma, 124, 3-22. |
[4] | Buckeridge KM, La Rosa AF, Mason KE, Whitaker J, McNamara NP, Grant HK, Ostle NJ (2020). Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biology & Biochemistry, 149, 107929. DOI: 10.1016/j.soilbio.2020.107929. |
[5] |
Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, et al.(2010). Global biodiversity: indicators of recent declines. Science, 328, 1164-1168.
DOI PMID |
[6] | Button ES, Pett-Ridge J, Murphy DV, Kuzyakov Y, Chadwick DR, Jones DL (2022). Deep-C storage: biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biology & Biochemistry, 170, 108697. DOI: 10.1016/j.soilbio.2022.108697. |
[7] |
Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z, Tang X, Zhou G, Xie Z, Zhou D, Shangguan Z, Huang J, He J, Wang Y, et al.(2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 115, 4027-4032.
DOI PMID |
[8] | Chen X, Chen HYH, Chen C, Ma Z, Searle EB, Yu Z, Huang Z (2020). Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biological Reviews, 95, 167-183. |
[9] | Chen X, Taylor AR, Reich PB, Hisano M, Chen HYH, Chang SX (2023). Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature, 618, 94-101. |
[10] | Cong W, Hoffland E, Li L, Six J, Sun J, Bao X, Zhang F, van der Werf W (2015). Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21, 1715-1726. |
[11] | Corbin AT, Thelen KD, Robertson GP, Leep RH (2010). Influence of cropping systems on soil aggregate and weed seedbank dynamics during the organic transition period. Agronomy Journal, 102, 1632-1640. |
[12] | Cotrufo MF, Haddix ML, Kroeger ME, Stewart CE (2022). The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology & Biochemistry, 168, 108648. DOI: 10.1016/j. soilbio.2022.108648. |
[13] | Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989-994. |
[14] | Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L (2016). Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems, 19, 645-660. |
[15] |
Dijkstra FA, Zhu B, Cheng W (2021). Root effects on soil organic carbon: a double-edged sword. New Phytologist, 230, 60-65.
DOI PMID |
[16] |
Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10, 420-424.
DOI |
[17] |
Duan P, Fu R, Nottingham AT, Domeignoz-Horta LA, Yang X, Du H, Wang K, Li D (2023). Tree species diversity increases soil microbial carbon use efficiency in a subtropical forest. Global Change Biology, 29, 7131-7144.
DOI PMID |
[18] | Engedal T, Magid J, Hansen V, Rasmussen J, Sørensen H, Jensen LS (2023). Cover crop root morphology rather than quality controls the fate of root and rhizodeposition C into distinct soil C pools. Global Change Biology, 29, 5677-5690. |
[19] |
Fang J, Yu G, Liu L, Hu S, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
DOI PMID |
[20] | Feng JG, He KY, Zhang QF, Han MG, Zhu B (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28, 3426-3440. |
[21] | Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394. |
[冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.]
DOI |
|
[22] | Fornara DA, Tilman D (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96, 314-322. |
[23] | Furey GN, Tilman D (2021). Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111321118. DOI: 10.1073/pnas.2111321118. |
[24] | Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, et al.(2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI: 10.1038/ncomms2328. |
[25] | Garland G, Bünemann EK, Oberson A, Frossard E, Six J (2017). Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant and Soil, 415, 37-55. |
[26] | Gould IJ, Quinton JN, Weigelt A, de Deyn GB, Bardgett RD (2016). Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 19, 1140-1149. |
[27] | Hättenschwiler S, Tiunov AV, Scheu S (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218. |
[28] | Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007). Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 10, 999-1018. |
[29] | Holeplass H, Singh BR, Lal R (2004). Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an inceptisol in southeastern Norway. Nutrient Cycling in Agroecosystems, 70, 167-177. |
[30] | Hu J, Du M, Chen J, Tie L, Zhou S, Buckeridge KM, Cornelissen JHC, Huang C, Kuzyakov Y (2023a). Microbial necromass under global change and implications for soil organic matter. Global Change Biology, 29, 3503-3515. |
[31] | Hu Q, Thomas BW, Powlson D, Hu Y, Zhang Y, Jun X, Shi X, Zhang Y (2023b). Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: a global meta-analysis. Agriculture, Ecosystems & Environment, 355, 108591. DOI: 10.1016/j.agee.2023.108591. |
[32] | Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202. |
[33] | Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445. |
[34] | Jia Y, Zhai G, Zhu S, Liu X, Schmid B, Wang Z, Ma K, Feng X (2021). Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology & Biochemistry, 161, 108375. DOI: 10.1016/j.soilbio.2021.108375. |
[35] | King AE, Congreves KA, Deen B, Dunfield KE, Voroney RP, Wagner-Riddle C (2019). Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biology & Biochemistry, 135, 95-107. |
[36] | Kou L, Jiang L, Hättenschwiler S, Zhang M, Niu S, Fu X, Dai X, Yan H, Li S, Wang H (2020). Diversity-decomposition relationships in forests worldwide. eLife, 9, e55813. DOI: 10.7554/eLife.55813. |
[37] | Kremer RJ, Kussman RD (2011). Soil quality in a pecan-kura clover alley cropping system in the Midwestern USA. Agroforestry Systems, 83, 213-223. |
[38] | Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. DOI: 10.1038/ncomms7707. |
[39] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[40] | Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68. |
[41] | Li B, Li Y, Wu H, Zhang F, Li C, Li X, Lambers H, Li L (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113, 6496-6501. |
[42] | Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus- deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192-11196. |
[43] | Li L, Li XF, Zhang WP, Zhang Y, Zhang LZ, Zhang FS (2024). Crop mixtures, ecosystem functioning, and mechanisms. //Scheiner Samuel M. Encyclopedia of Biodiversity. 3rd ed. Elsevier, Oxford. 495-513. |
[44] | Li L, Tang C, Rengel Z, Zhang FS (2004). Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil, 261, 29-37. |
[45] | Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, Wang CB, Wu JP, Liu XR, Tian XL, Wang Y, Li JP, Wang Y, Xia HY, Mei PP, et al.(2021). Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 4, 943-950. |
[46] | Liang C, Balser TC (2011). Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 9, 75. DOI: 10.1038/nrmicro2386-c1. |
[47] | Liang C, Balser TC (2012). Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 3, 1222. DOI: 10.1038/ncomms2224. |
[48] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105. |
[49] |
Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ, Luan F, Wang H, Hu Y, Yang Q (2020). Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist, 227, 757-765.
DOI PMID |
[50] | Liu MQ, Hu F, Chen XY (2007). A review on mechanisms of soil organic carbon stabilization. Acta Ecologica Sinica, 27, 2642-2650. |
[刘满强, 胡锋, 陈小云 (2007). 土壤有机碳稳定机制研究进展. 生态学报, 27, 2642-2650.] | |
[51] | Liu X, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang Z, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang Y, Wang C, Staab M, et al. (2018). Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 285, 20181240. DOI: 10.1098/rspb.2018.1240. |
[52] | Liu Y, Miao HT, Chang XF, Wu GL (2019). Higher species diversity improves soil water infiltration capacity by increasing soil organic matter content in semiarid grasslands. Land Degradation & Development, 30, 1599-1606. |
[53] | Ludwig M, Achtenhagen J, Miltner A, Eckhardt KU, Leinweber P, Emmerling C, Thiele-Bruhn S (2015). Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biology & Biochemistry, 81, 311-322. |
[54] | Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1. |
[55] | Ma Y, Woolf D, Fan M, Qiao L, Li R, Lehmann J (2023). Global crop production increase by soil organic carbon. Nature Geoscience, 16, 1159-1165. |
[56] | Ma ZL, Chen HYH (2017). Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. Journal of Ecology, 105, 237-245. |
[57] | Messaoudi H, Gérard F, Dokukin P, Djamai H, Rebouh NY, Latati M (2020). Effects of intercropping on field-scale phosphorus acquisition processes in a calcareous soil. Plant and Soil, 449, 331-341. |
[58] | Navrátilová D, Tláskalová P, Kohout P, Drevojan P, Fajmon K, Chytrý M, Baldrian P (2019). Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiology Ecology, 95. DOI: 10.1093/femsec/fiy208. |
[59] | Pan G, Smith P, Pan W (2009). The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129, 344-348. |
[60] | Panchal P, Preece C, Peñuelas J, Giri J (2022). Soil carbon sequestration by root exudates. Trends in Plant Science, 27, 749-757. |
[61] | Pérès G, Cluzeau D, Menasseri S, Soussana JF, Bessler H, Engels C, Habekost M, Gleixner G, Weigelt A, Weisser WW, Scheu S, Eisenhauer N (2013). Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant and Soil, 373, 285-299. |
[62] | Prairie AM, King AE, Cotrufo MF (2023). Restoring particulate and mineral-associated organic carbon through regenerative agriculture. Proceedings of the National Academy of Sciences of the United States of America, 120, e2217481120. DOI: 10.1073/pnas.2217481120. |
[63] |
Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A (2020). Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 26, 669-681.
DOI PMID |
[64] | Qian ZY, Gu R, Gao K, Li DJ (2023a). High plant species diversity enhances lignin accumulation in a subtropical forest of southwest China. Science of the Total Environment, 865, 161113. DOI: 10.1016/j.scitotenv.2022.161113. |
[65] | Qian ZY, Li YN, Du H, Wang KL, Li DJ (2023b). Increasing plant species diversity enhances microbial necromass carbon content but does not alter its contribution to soil organic carbon pool in a subtropical forest. Soil Biology & Biochemistry, 187, 109183. DOI: 10.1016/j.soilbio.2023.109183. |
[66] | Qin ZF, Xie MX, Zhang YL, Li X, Li HG, Zhang JL (2023). Research progress in soil organic carbon stabilization mediated by arbuscular mycorrhizal fungi. Journal of Plant Nutrition and Fertilizers, 29, 756-766. |
[秦泽峰, 谢沐希, 张运龙, 李侠, 李海港, 张俊伶 (2023). 丛枝菌根真菌介导的土壤有机碳稳定机制研究进展. 植物营养与肥料学报, 29, 756-766.] | |
[67] | Ravenek JM, Bessler H, Engels C, Scherer-Lorenzen M, Gessler A, Gockele A, De Luca E, Temperton VM, Ebeling A, Roscher C, Schmid B, Weisser WW, Wirth C, de Kroon H, Weigelt A, Mommer L (2014). Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos, 123, 1528-1536. |
[68] | Rui Z, Lu X, Li Z, Lin Z, Lu H, Zhang D, Shen S, Liu X, Zheng J, Drosos M, Cheng K, Bian R, Zhang X, Li L, Pan G (2022). Macroaggregates serve as micro-hotspots enriched with functional and networked microbial communities and enhanced under organic/inorganic fertilization in a paddy topsoil from Southeastern China. Frontiers in Microbiology, 13, 831746. DOI: 10.3389/fmicb.2022.831746. |
[69] | Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, et al. (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556. |
[70] | Schittko C, Onandia G, Bernard-Verdier M, Heger T, Jeschke JM, Kowarik I, Maaß S, Joshi J (2022). Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 110, 916-934. |
[71] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[72] | Schwendenmann L, Pendall E (2006). Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes. Plant and Soil, 288, 217-232. |
[73] | Situ GM, Zhao YL, Zhang L, Yang XQ, Chen D, Li SH, Wu QF, Xu QF, Chen JH, Qin H (2022). Linking the chemical nature of soil organic carbon and biological binding agent in aggregates to soil aggregate stability following biochar amendment in a rice paddy. Science of the Total Environment, 847, 157460. DOI: 10.1016/j.scitotenv.2022.157460. |
[74] | Six J, Conant RT, Paul EA, Paustian K (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176. |
[75] | Six J, Elliott ET, Paustian K (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099-2103. |
[76] |
Sokol NW, Bradford MA (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12, 46-53.
DOI |
[77] |
Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, Firestone MK, Foley MM, Hestrin R, Hungate BA, Koch BJ, Stone BW, Sullivan MB, Zablocki O, Soil Microbiome Consortium LLNL, Pett-Ridge J (2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20, 415-430.
DOI PMID |
[78] | Surigaoge S, Yang H, Fornara D, Su Y, Du Y, Ren S, Zhang W, Li L (2024). Litter functional dissimilarity accelerates carbon and nitrogen release from the decomposition of straw but not root in maize/legume intercropping. Plant and Soil. DOI: 10.1007/s11104-024-06616-8. |
[79] | Surigaoge S, Yang H, Su Y, Du Y, Ren S, Fornara D, Christie P, Zhang W, Li L (2023). Maize/peanut intercropping has greater synergistic effects and home-field advantages than maize/soybean on straw decomposition. Frontiers in Plant Science, 14, 1100842. DOI: 10.3389/fpls.2023.1100842. |
[80] | Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MGA, Liebman M, Hallin S (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6, eaba1715. DOI: 10.1126/sciadv.aba1715. |
[81] | Tang R, Zhao J, Liu Y, Huang X, Zhang Y, Zhou D, Ding A, Nielsen CP, Wang H (2022). Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030. Nature Communications, 13, 1008. DOI: 10.1038/s41467-022-28672-3. |
[82] | Tian QL, Zhang XP, Yi HJ, Li YY, Xu XM, He J, He L (2023). Plant diversity drives soil carbon sequestration: evidence from 150 years of vegetation restoration in the temperate zone. Frontiers in Plant Science, 14, 1191704. DOI: 10.3389/fpls.2023.1191704. |
[83] | Tian X, Wang C, Bao X, Wang P, Li X, Yang S, Ding G, Christie P, Li L (2019). Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 436, 173-192. |
[84] | Tilman D, Isbell F, Cowles JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. |
[85] | Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, et al.(2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865. |
[86] | Wang B, An S, Liang C, Liu Y, Kuzyakov Y (2021a). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology & Biochemistry, 162, 108422. DOI: 10.1016/j.soilbio.2021.108422. |
[87] | Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021b). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048. |
[88] |
Wang H, Ding Y, Zhang Y, Wang J, Freedman ZB, Liu P, Cong W, Wang J, Zang R, Liu S (2023). Evenness of soil organic carbon chemical components changes with tree species richness, composition and functional diversity across forests in China. Global Change Biology, 29, 2852-2864.
DOI PMID |
[89] | Wang JK, Xu YD, Ding F, Gao XD, Li SY, Sun LJ, An TT, Pei JB, Li M, Wang Y, Zhang WJ, Ge Z (2019). Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 56, 528-540. |
[汪景宽, 徐英德, 丁凡, 高晓丹, 李双异, 孙良杰, 安婷婷, 裴久渤, 李明, 王阳, 张维俊, 葛壮 (2019). 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 56, 528-540.] | |
[90] | Wang MM, Guo XW, Zhang S, Xiao LJ, Mishra U, Yang YH, Zhu B, Wang GC, Mao XL, Qian T, Jiang T, Shi Z, Luo ZK (2022). Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nature Communications, 13, 5514. DOI: 10.1038/s41467-022-33278-w |
[91] | Wooliver R, Jagadamma S (2023). Response of soil organic carbon fractions to cover cropping: a meta-analysis of agroecosystems. Agriculture, Ecosystems & Environment, 351, 108497. DOI: 10.1016/j.agee.2023.108497. |
[92] | Wu J, Bao X, Zhang J, Lu B, Callaway RM, Fornara DA, Li L (2024). Temporal and spatial effects of crop diversity on soil carbon and nitrogen storage and vertical distribution. Soil and Tillage Research, 235, 105913. DOI: 10.1016/j.still.2023.105913. |
[93] | Xiao K, Zhao Y, Liang C, Zhao M, Moore OW, Otero-Fariña A, Zhu Y, Johnson K, Peacock CL (2023). Introducing the soil mineral carbon pump. Nature Reviews Earth & Environment, 4, 135-136. |
[94] | Yang Y, Tilman D, Furey G, Lehman C (2019). Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications, 10, 718. DOI: 10.1038/s41467-019-08636-w. |
[95] | Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, et al.(2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65, 861-895. |
[96] | Zhang S, Meng L, Hou J, Liu X, Ogundeji AO, Cheng Z, Yin T, Clarke N, Hu B, Li S (2022). Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of northeast China. Plant and Soil, 481, 63-82. |
[97] | Zhang W, Fornara D, Yang H, Yu R, Callaway RM, Li L (2023). Plant litter strengthens positive biodiversity- ecosystem functioning relationships over time. Trends in Ecology & Evolution, 38, 473-484. |
[98] | Zhang W, Gao S, Li Z, Xu H, Yang H, Yang X, Fan H, Su Y, Fornara D, Li L (2021). Shifts from complementarity to selection effects maintain high productivity in maize/legume intercropping systems. Journal of Applied Ecology, 58, 2603-2613. |
[99] | Zhang WP, Liu GC, Sun JH, Fornara D, Zhang LZ, Zhang FF, Li L (2017). Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 31, 469-479. |
[100] | Zhang WP, Surigaoge S, Yang H, Yu RP, Wu JP, Xing Y, Chen Y, Li L (2024). Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant and Soil, 502, 7-30. |
[101] | Zhao X, Hao C, Zhang R, Jiao N, Tian J, Lambers H, Liang C, Cong W, Zhang F (2023). Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biology & Biochemistry, 185, 109146. DOI: 10.1016/j.soilbio.2023.109146. |
[102] | Zheng FJ, Liu XT, Ding WT, Song XJ, Li SP, Wu XP (2023). Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: a meta-analysis. Agriculture, Ecosystems & Environment, 355, 108600. DOI: 10.1016/j.soilbio.2023.109146. |
[103] |
Zhou G, Xu S, Ciais P, Manzoni S, Fang J, Yu G, Tang X, Zhou P, Wang W, Yan J, Wang G, Ma K, Li S, Du S, Han S, et al.(2019). Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Review, 6, 746-757.
DOI |
[104] | Zuo Y, Zhang F (2009). Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy for Sustainable Development, 29, 63-71. |
[1] | Yaping NIU Xiaoxia Gao Shiting Yao Yuan-He YANG Yun-feng PENG. Linkages of plant diversity and functional groups to aboveground productivity upon alpine grassland degradation [J]. Chin J Plant Ecol, 2025, 49(1): 0-0. |
[2] | wen-ying wang xiao yuanming Xiao-Yun WANG JiaXin XU yuhua ma Li Qiangfeng 周 国英. Plant diversity and ecosystem multifunctionality in heavily degraded alpine meadows under multifunctional group species combination models [J]. Chin J Plant Ecol, 2025, 49(1): 1-0. |
[3] | shuhui du Jian MinCHU junguang duan 薛 建国 lei xu XU XIAOQING Jian-Hui HUANG Qian Zhang. The impact of soil lignin phenols content on organic carbon in typical grassland with different degrees of degradation [J]. Chin J Plant Ecol, 2025, 49(1): 1-0. |
[4] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[5] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[6] | ZHANG Yu, DU Ting, CHEN Yu-Lian, ZHU He-Meng, TAN Bo, YOU Cheng-Ming, ZHANG Li, XU Zhen-Feng, LI Han. Contribution of litter-derived carbon to soil organic carbon fractions and its response to freezing-thaw cycling in a subalpine forest [J]. Chin J Plant Ecol, 2024, 48(11): 1422-1433. |
[7] | WANG Liang, ZHAO Xue-Chao, YANG Shao-Bo, WANG Qing-Kui. Priming effect of soil organic carbon decomposition induced by Cunninghamia lanceolate leaf litter and fine root and its response to nitrogen addition in subtropical forests [J]. Chin J Plant Ecol, 2024, 48(11): 1434-1444. |
[8] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[9] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[10] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[11] | WANG Shu-Wen, LI Wen-Huai, LI Yan-Long, YAN Hui, LI Yong-Hong. Effects of different livestock types on plant diversity and community structure of a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(8): 941-950. |
[12] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[13] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[14] | ZHOU Kai-Ling, ZHAO Yu-Jin, BAI Yong-Fei. Study on forest plant diversity monitoring based on Sentinel-2A satellite data in northeast China [J]. Chin J Plant Ecol, 2022, 46(10): 1251-1267. |
[15] | Min FAN, Yi-Tong LU, Zhao-Hua WANG, Ying-Qi HUANG, Yu PENG, Jia-Xin SHANG, Yang ZHANG. Effects of patch pattern on plant diversity and functional traits in center Hunshandak Sandland [J]. Chin J Plant Ecol, 2022, 46(1): 51-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn