Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (5): 710-719.DOI: 10.17521/cjpe.2024.0030 cstr: 32100.14.cjpe.2024.0030
Special Issue: 草原与草业
• Research Articles • Previous Articles Next Articles
HAO Jie1,3,4, DIAO Hua-Jie2,3,4, SU Yuan2,3,4, WU Shuai-Kai2,3,4, GAO Yang-Yang2,3,4, LIANG Wen-Jun2,3,4, NIU Hui-Min2,3,4, YANG Qian-Wen2,3,4, CHANG Jie2,3,4, WANG Ge2,3,4, XU Wen-Li2,3,4, MA Teng-Fei2,3,4, DONG Kuan-Hu2,3,4,*(), $\boxed{\hbox{WANG Chang-Hui}}$ 2,3,4,*
Received:
2024-01-28
Accepted:
2024-12-10
Online:
2025-05-20
Published:
2025-04-14
Contact:
DONG Kuan-Hu, $\boxed{\hbox{WANG Chang-Hui}}$
Supported by:
HAO Jie, DIAO Hua-Jie, SU Yuan, WU Shuai-Kai, GAO Yang-Yang, LIANG Wen-Jun, NIU Hui-Min, YANG Qian-Wen, CHANG Jie, WANG Ge, XU Wen-Li, MA Teng-Fei, DONG Kuan-Hu, $\boxed{\hbox{WANG Chang-Hui}}$. Precipitation regulates the response of salinized grassland net primary productivity to nitrogen addition and mowing in the agro-pastoral zone[J]. Chin J Plant Ecol, 2025, 49(5): 710-719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0030
Fig. 1 Daily average air temperature (A) and accumulated precipitation (B) in the growing season (May-September) of salinized grassland at 2017 and 2018.
影响因子 Effecting factor | 无机氮含量 IN content | 土壤含水量 SM | ||
---|---|---|---|---|
F | p | F | p | |
截距 Intercept | 467.78 | <0.01 | 189.17 | <0.01 |
氮添加 Nitrogen addition (N) | 3.57* | <0.05 | 0.85 | 0.43 |
刈割 Mowing (M) | 0.04 | 0.83 | 0.57 | 0.45 |
年 Year (Y) | 251.19** | <0.01 | 37.91** | <0.01 |
N × M | 0.01 | 0.98 | 0.30 | 0.73 |
N × Y | 2.84# | 0.06 | 0.24 | 0.78 |
M × Y | 0.75 | 0.38 | 7.12* | <0.05 |
N × M × Y | 0.00 | 0.99 | 0.00 | 0.99 |
Table 1 Repeated analysis of variance of the effects of nitrogen addition and mowing on soil inorganic nitrogen (IN) content and soil water content (SM) in agro-pastoral ecotone
影响因子 Effecting factor | 无机氮含量 IN content | 土壤含水量 SM | ||
---|---|---|---|---|
F | p | F | p | |
截距 Intercept | 467.78 | <0.01 | 189.17 | <0.01 |
氮添加 Nitrogen addition (N) | 3.57* | <0.05 | 0.85 | 0.43 |
刈割 Mowing (M) | 0.04 | 0.83 | 0.57 | 0.45 |
年 Year (Y) | 251.19** | <0.01 | 37.91** | <0.01 |
N × M | 0.01 | 0.98 | 0.30 | 0.73 |
N × Y | 2.84# | 0.06 | 0.24 | 0.78 |
M × Y | 0.75 | 0.38 | 7.12* | <0.05 |
N × M × Y | 0.00 | 0.99 | 0.00 | 0.99 |
Fig. 2 Effects of nitrogen addition (N) and mowing (M) on soil inorganic nitrogen (IN, A) content, soil water content (SM, C) and inter-annual average values (B, D) in agro-pastoral ecotone. AN+M, NH4NO3 + mowing; AN+UM, NH4NO3 + un-mowing; CK+M, control + mowing; CK+UM, control + un-mowing; UN+M, urea + mowing; UN+UM, urea + un-mowing. Different lowercase letters indicate significant difference in indicators among different N treatments at p < 0.05 under the un-mowing and the mowing treatment, and different uppercase letters represent significant differences between years among different treatments (p < 0.05). Results (F values) of linear mixed-effects models are shown in figure and indicated by * when p < 0.05, and ns when not statistically significant (p > 0.1).
影响因子 Effecting factor | 地上净初级生产力 ANPP | 地下净初级生产力 BNPP | 总初级生产力 NPP | 地下:地上净初级生产力 BNPP:ANPP | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
截距 Intercept | 234.28 | <0.01 | 156.63 | <0.01 | 230.27 | <0.01 | 149.60 | <0.01 |
氮添加 Nitrogen addition (N) | 14.81** | <0.01 | 4.08* | <0.05 | 10.56** | <0.01 | 1.86 | 0.16 |
刈割 Mowing (M) | 0.93 | 0.33 | 2.75 | 0.10 | 4.09* | <0.05 | 0.91 | 0.34 |
年 Year (Y) | 11.33** | <0.01 | 4.21* | <0.05 | 11.06** | <0.01 | 0.00 | 0.92 |
N × M | 0.22 | 0.80 | 1.04 | 0.35 | 1.14 | 0.32 | 1.20 | 0.30 |
N × Y | 3.80* | <0.05 | 0.86 | 0.42 | 2.77# | 0.07 | 0.14 | 0.86 |
M × Y | 0.50 | 0.48 | 1.39 | 0.24 | 0.82 | 0.36 | 3.13# | 0.08 |
N × M × Y | 0.01 | 0.98 | 0.09 | 0.90 | 0.07 | 0.93 | 0.67 | 0.51 |
Table 2 Repeated analysis of variance of the effects of nitrogen addition and mowing on aboveground (ANPP), belowground (BNPP), total net primary productivity (NPP) and BNPP:ANPP in agro-pastoral ecotone
影响因子 Effecting factor | 地上净初级生产力 ANPP | 地下净初级生产力 BNPP | 总初级生产力 NPP | 地下:地上净初级生产力 BNPP:ANPP | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
截距 Intercept | 234.28 | <0.01 | 156.63 | <0.01 | 230.27 | <0.01 | 149.60 | <0.01 |
氮添加 Nitrogen addition (N) | 14.81** | <0.01 | 4.08* | <0.05 | 10.56** | <0.01 | 1.86 | 0.16 |
刈割 Mowing (M) | 0.93 | 0.33 | 2.75 | 0.10 | 4.09* | <0.05 | 0.91 | 0.34 |
年 Year (Y) | 11.33** | <0.01 | 4.21* | <0.05 | 11.06** | <0.01 | 0.00 | 0.92 |
N × M | 0.22 | 0.80 | 1.04 | 0.35 | 1.14 | 0.32 | 1.20 | 0.30 |
N × Y | 3.80* | <0.05 | 0.86 | 0.42 | 2.77# | 0.07 | 0.14 | 0.86 |
M × Y | 0.50 | 0.48 | 1.39 | 0.24 | 0.82 | 0.36 | 3.13# | 0.08 |
N × M × Y | 0.01 | 0.98 | 0.09 | 0.90 | 0.07 | 0.93 | 0.67 | 0.51 |
Fig. 3 Effects of nitrogen addition (N) and mowing (M) on the aboveground (ANPP, A), belowground (BNPP, C), and total net primary productivity (NPP, E), as well as the belowground/aboveground net primary productivity ratio (G), and the inter-annual means (B, D, F, H). AN+M, NH4NO3 + mowing; AN+UM, NH4NO3 + un-mowing; CK+M, control + mowing; CK+UM, control + un-mowing; UN + M, urea + mowing; UN+UM, urea + un-mowing. Different lowercase letters indicate significant difference in indicators among different nitrogen treatments at p < 0.05 under the un-mowing and the mowing treatment, and different uppercase letters represent significant differences between years among different treatments (p < 0.05). Results (F values) of linear mixed-effects models are shown in figure and indicated by ** when p < 0.01, * when 0.01 ≤ p < 0.05, # when 0.05 ≤ p < 0.10, and ns when p > 0.10.
Fig. 4 Relationship between total net primary productivity and soil inorganic nitrogen content (A), soil water content (B), soil temperature (C), and the relationship between soil inorganic nitrogen content and soil water content (D) under mowing and un-mowing treatment measured in 2017 and 2018 in the salinized grasslands of the agro-pastoral ecotone. Different colored squares represent different forms of nitrogen addition treatments. Solid lines and dotted lines represent un-mowing and mowing treatments, respectively. Shadow parts represent 95% confidence intervals. AN+M, NH4NO3 + mowing; AN+UM, NH4NO3 + un-mowing; CK+M, control + mowing; CK+UM, control + un-mowing; UN+M, urea + mowing; UN+UM, urea + un-mowing.
Fig. 5 Variability of total net primary productivity (NPP) across the sampling dates in the context of soil inorganic nitrogen content, and soil water content in the salinized grasslands of the agro-pastoral ecotone.
[1] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[2] | Diao HJ, Chen XP, Wang G, Ning QS, Hu SY, Sun W, Dong KH, Wang CH (2022). The response of soil respiration to different N compounds addition in a saline-alkaline grassland of northern China. Journal of Plant Ecology, 15, 897-910. |
[3] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[4] |
Eskelinen A, Harrison SP (2015). Resource colimitation governs plant community responses to altered precipitation. Proceedings of the National Academy of Sciences of the United States of America, 112, 13009-13014.
DOI PMID |
[5] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[6] | Hu SY, Diao HJ, Wang HL, Bo YC, Shen Y, Sun W, Dong KH, Huang JH, Wang CH (2020). Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone. Chinese Journal of Plant Ecology, 44, 70-79. |
[ 胡姝娅, 刁华杰, 王惠玲, 薄元超, 申颜, 孙伟, 董宽虎, 黄建辉, 王常慧 (2020). 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应. 植物生态学报, 44, 70-79.]
DOI |
|
[7] | Ke Y, Yu Q, Wang H, Zhao Y, Jia X, Yang Y, Zhang Y, Zhou W, Wu H, Xu C, Sun T, Gao Y, Jentsch A, He N, Yu G (2023). The potential bias of nitrogen deposition effects on primary productivity and biodiversity. Global Change Biology, 29, 1054-1061. |
[8] | Kong DL, Lü XT, Jiang LL, Wu HF, Miao Y, Kardol P (2013). Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment. Biogeosciences, 10, 8129-8138. |
[9] | Kuai XY, Xing PF, Zhang XL, Liang Y, Wang CH, Dong KH (2018). Effects of short-term grazing intensity on plant community diversity and productivity in semi-arid grassland. Acta Agrestia Sinica, 26, 1283-1289. |
[ 蒯晓妍, 邢鹏飞, 张晓琳, 梁艳, 王常慧, 董宽虎 (2018). 短期放牧强度对半干旱草地植物群落多样性和生产力的影响. 草地学报, 26, 1283-1289.]
DOI |
|
[10] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI PMID |
[11] | Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 365, 2047-2056. |
[12] |
Lei TJ, Feng J, Zheng CY, Li SG, Wang Y, Wu ZT, Lu JX, Kan GY, Shao CL, Jia JS, Cheng H (2020). Review of drought impacts on carbon cycling in grassland ecosystems. Frontiers of Earth Science, 14, 462-478.
DOI |
[13] | Li CB, Zheng Z, Peng YF, Nie XQ, Yang LC, Xiao YM, Zhou GY (2019). Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecology and Evolution, 9, 12193-12201. |
[14] | Li S, An PL, Pan ZH, Wang FT, Li XM, Liu Y (2015). Farmers’ initiative on adaptation to climate change in the Northern Agro-pastoral Ecotone. International Journal of Disaster Risk Reduction, 12, 278-284. |
[15] | Luo Y (2022). Effects of Different Mowing Intensity on Belowground Net Primary Production and Root Dynamics in the Grassland of Farming-pastoral Zone in Northern China. Master degree dissertation, Northeast Normal University, Changchun. |
[ 骆岩 (2022). 不同刈割强度对北方农牧交错带草地地下净初级生产力和根系动态的影响. 硕士学位论文, 东北师范大学, 长春.] | |
[16] | Ning QS, Jiang LC, Niu GX, Yu Q, Liu JS, Wang RZ, Liao S, Huang JH, Han XG, Yang JJ (2023). Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant and Soil, 491, 205-217. |
[17] | Pinheiro J, Bates D, Debroy S (2017). nlme: Linear and nonlinear mixed effects models. R package version, 3, 1-131. https://web.mit.edu/r/current/lib/R/library/nlme/html/00Index.html. |
[18] |
Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI PMID |
[19] | Seabloom EW, Adler PB, Alberti J, Biederman L, Buckley YM, Cadotte MW, Collins SL, Dee L, Fay PA, Firn J, Hagenah N, Harpole WS, Hautier Y, Hector A, Hobbie SE, et al. (2021). Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 102, e03218. DOI: 10.1002/ecy.3218. |
[20] | Smith MD (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663. |
[21] | Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[22] | Tian DS, Niu SL, Pan QM, Ren TT, Chen SP, Bai YF, Han XG (2016). Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 30, 490-499. |
[23] | Wang C, Vera-Vélez R, Lamb EG, Wu J, Ren F (2022). Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. Science of the Total Environment, 806, 151224. DOI: 10.1016/j.scitotenv.2021.151224. |
[24] | Wang J, Abdullah I, Xu T, Zhu W, Gao Y, Wang L (2019a). Effects of mowing disturbance and competition on spatial expansion of the clonal plant Leymus chinensis into saline-alkali soil patches. Environmental and Experimental Botany, 168, 103890. DOI: 10.1016/j.envexpbot.2019.103890. |
[25] | Wang J, Gao Y, Zhang Y, Yang J, Smith MD, Knapp AK, Eissenstat DM, Han X (2019b). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969. |
[26] |
Wang K, Zhong S, Sun W (2020). Clipping defoliation and nitrogen addition shift competition between a C3grass (Leymus chinensis) and a C4 grass (Hemarthria altissima). Plant Biology, 22, 221-232.
DOI PMID |
[27] | Wang X, Guo X, Ding WL, Du N, Guo WH, Pang JY (2023). Precipitation pattern alters the effects of nitrogen deposition on the growth of alien species Robinia pseudoacacia. Heliyon, 9, e21822. DOI: 10.1016/j.heliyon.2023.e21822. |
[28] | Wilcox KR, Koerner SE, Hoover DL, Borkenhagen AK, Burkepile DE, Collins SL, Hoffman AM, Kirkman KP, Knapp AK, Strydom T, Thompson DI, Smith MD (2020). Rapid recovery of ecosystem function following extreme drought in a south African savanna grassland. Ecology, 101, e02983. DOI: 10.1002/ecy.2983. |
[29] |
Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill Jr J, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, et al. (2017). Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Global Change Biology, 23, 4376-4385.
DOI PMID |
[30] | Wu SK, Hao J, Diao HJ, Ju X, Ning YN, Su Y, Dong KH, Wang CH (2023). Response of grassland biomass to short-term grazing intensities in the agro-pastoral ecotone in northern Shanxi. Acta Agrestia Sinica, 31, 2446-2454. |
[ 武帅楷, 郝杰, 刁华杰, 居新, 宁亚楠, 苏原, 董宽虎, 王常慧 (2023). 晋北农牧交错带草地生物量对短期放牧强度的响应. 草地学报, 31, 2446-2454.]
DOI |
|
[31] |
Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI PMID |
[32] | Xu ZW, Jiang L, Ren HY, Han XG (2024). Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Global Change Biology, 30, e17071. DOI: 10.1111/gcb.17071. |
[33] | Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG (2022). Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720. |
[34] | Yang GJ, Lü XT, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG (2019). Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189, 769-779. |
[35] | Yang GJ, Stevens C, Zhang ZJ, Lü XT, Han XG (2023). Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe. Global Change Biology, 29, 4586-4594. |
[36] | Yang Z, Minggagud H, Baoyin T, Li FY (2020). Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. Journal of Environmental Management, 253, 109745. DOI: 10.1016/j.jenvman.2019.109745. |
[37] | Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[38] | Zhao CZ, Li GD, Li Q, Zhou DW (2022). Effects of mowing frequency on biomass allocation and yield of Leymus chinensis. Rangeland Ecology & Management, 83, 102-111. |
[39] | Zhao X, Zhu HS, Dong KH, Li DY (2017). Plant community and succession in lowland grasslands under saline-alkali conditions with grazing exclusion. Agronomy Journal, 109, 2428-2437. |
[40] | Zhou J, Wilson GWT, Cobb AB, Yang G, Zhang Y (2019). Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity. Land Degradation and Development, 30, 647-657. |
[1] | TONG Jin-Lian, ZHANG Bo-Na, TANG TANG Lu-yao, YE Lin-Feng, LI Shu-Wen, LI Yan, Zhong-Yuan WANG. Regional differentiation of functional trait network of C4 plants Setaria viridis along precipitation gradient [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-. |
[2] | HAN Fei, WANG Ge, WU Shuai-Kai, LIN Mao, DONG Kuan-Hu, $\boxed{\hbox{WANG Chang-Hui}}$ , SU Yuan. Effects of extreme precipitation on soil gross nitrification rate, gross nitrogen mineralization rate and sensitivity of different types of grassland [J]. Chin J Plant Ecol, 2025, 49(5): 697-709. |
[3] | TANG Yuan-Xiang, XIONG Shi-Chen, ZHU Hong-Feng, ZHANG Xin-Sheng, YOU Cheng-Ming, LIU Si-Ning, TAN Bo, XU Zhen-Feng. Effects of long-term nitrogen addition on leaf litter production and carbon, nitrogen and phosphorus return of the dominant tree species in broadleaf evergreen forests on the western margin of Sichuan Basin [J]. Chin J Plant Ecol, 2025, 49(5): 720-731. |
[4] | YAN Xiao-Li, LIU Gui-Mei, LI Xiao-Yu, JIANG Yu-Xiang, QUAN Xiao-Qiang, WANG Yan-Ru, QU Lu-Ping, TANG Xing-Hao. Photosynthetic characteristics and chlorophyll fluorescence parameters in Schima superba seedlings under different level of nitrogen addition and NH4+-N to NO3--N ratio [J]. Chin J Plant Ecol, 2025, 49(4): 624-637. |
[5] | ZHAO Meng-Yang, ZHUANG Hao-Ran, XU De-Hao, MA Guo-Rong, MA Yong-Cheng, FENG Ke-Peng. Hydrogen and oxygen stable isotope characteristics of maize fields in arid and semi-arid oasis irrigation areas with SPAC system: variability traits and influencing factors [J]. Chin J Plant Ecol, 2025, 49(2): 256-267. |
[6] | RAN Jia-Xin, ZHANG Yu-Hui, WANG Yun, YANG Zhi-Jie, MAO Chao. Effects of warming and nitrogen and phosphorus addition on dissolved organic carbon biodegradability of litter in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(9): 1232-1242. |
[7] | QUAN Xiao-Qiang, WANG Yan-Ru, LI Xiao-Yu, LIANG Hai-Yan, WANG Li-Dong, YAN Xiao-Li. Effects of nitrogen addition level and NH4+-N to NO3--N ratio on photosynthetic characteristics and chlorophyll fluorescence parameters in Cunninghamia lanceolata seedling [J]. Chin J Plant Ecol, 2024, 48(8): 1050-1064. |
[8] | MA Xu-Han, HUANG Ju-Ying, YU Hai-Long, HAN Cui, LI Bing. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China [J]. Chin J Plant Ecol, 2024, 48(8): 1065-1077. |
[9] | ZHANG Fu-Chong, YU Ming-Han, ZHANG Jian-Ling, WANG Ping, DING Guo-Dong, HE Ying-Ying, SUN Hui-Yuan. Synergistic response mechanisms in xylem and phloem of Artemisia ordosica to changes in precipitation [J]. Chin J Plant Ecol, 2024, 48(7): 903-914. |
[10] | ZHANG Wen-Jin, SHE Wei-Wei, QIN Shu-Gao, QIAO Yan-Gui, ZHANG Yu-Qing. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of the dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[11] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[12] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[13] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[14] | MA Bin, SHE Wei-Wei, QIN Huan, XUAN Rui-Zhi, SONG Chun-Yang, YUAN Xin-Yue, MIAO Chun, LIU Liang, FENG Wei, QIN Shu-Gao, ZHANG Yu-Qing. Effects of nitrogen and water addition on seed functional traits of Artemisia ordosica [J]. Chin J Plant Ecol, 2024, 48(12): 1637-1649. |
[15] | LAN Guang-Fei, ZHANG Qiang, CHEN Xiang-Biao, CHEN Shi-Dong, XIONG De-Cheng, LIU Xiao-Fei, YANG Zhi-Jie, YANG Yu-Sheng. Seasonal dynamics of litterfall of a Castanopsis kawakamii evergreen broadleaf forest in mid-subtropical China and their influencing factors [J]. Chin J Plant Ecol, 2024, 48(12): 1589-1601. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn