Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (7): 1156-1162.DOI: 10.17521/cjpe.2024.0309 cstr: 32100.14.cjpe.2024.0309
• Research Articles • Previous Articles Next Articles
ZHANG Wen-Ting, ZHANG Guo-Yun, PEI Guo-Liang, LI Peng-Min*()
Received:
2024-09-12
Accepted:
2024-12-10
Online:
2025-07-20
Published:
2025-03-25
Contact:
LI Peng-Min
Supported by:
ZHANG Wen-Ting, ZHANG Guo-Yun, PEI Guo-Liang, LI Peng-Min. Different photoinhibition of PSII and PSI in Eriobotrya japonica leaves in winter revealed by simultaneous measurements of chlorophyll fluorescence and 820 nm light reflection[J]. Chin J Plant Ecol, 2025, 49(7): 1156-1162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0309
Fig. 1 Induction kinetics of chlorophyll a fluorescence (A) and 820 nm reflection (B) in Eriobotrya japonica leaves growing in different seasons. Each curve was the average of five replicates. MR0, initial point of 820 nm reflection; MRmin, minimum of 820 nm reflection; MRmax, maximum of 820 nm reflection.
Fig. 2 Parameters derived from chlorophyll a fluorescence (A) and 820 nm reflection (B) kinetics in Eriobotrya japonica leaves growing in different seasons (mean ± SE, n = 5). Different lowercase letters above the bars indicate significant difference for same parameter among different seasons (p < 0.05, LSD). Fv/Fm, maximum quantum yield of PSII; Wk, relative variable fluorescence at K-step; Vi, relative variable fluorescence at I-step; Vj, relative variable fluorescence at J-step; VPSI, maximum decrease slope of 820 nm reflection; VPSII-PSI, maximum increase slope of 820 nm reflection.
Fig. 3 Actual photochemical efficiencies of two photosystems and non-photochemical quenching in Eriobotrya japonica leaves under light conditions in different seasons (mean ± SE, n = 5). ΦPSII, actual photochemical efficiency of PSII; ΦPSI, actual photochemical efficiency of PSI; NPQ, non-photochemical quenching; PPFD, photosynthetic photon flux density.
[1] |
Chen LS, Li PM, Cheng LL (2008). Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta, 228, 745-756.
DOI PMID |
[2] | Cheng DM, Zhang ZY, Zhou SX, Peng YS, Zhang ZX (2019). Photoinhibition and recovery of photosystem II of three broad-leaved evergreens under low temperature stress. Guihaia, 39, 1666-1672. |
[程冬梅, 张志勇, 周赛霞, 彭焱松, 张兆祥 (2019). 三种常绿阔叶树光系统II在低温胁迫下的光抑制及恢复. 广西植物, 39, 1666-1672.] | |
[3] | Feng YL, Cao KF, Feng ZL (2004). Effects of nocturnal chilling temperature on chlorophyll fluorescence parameters in seedlings of two ravine rainforest species grown under different light intensities. Acta Phytoecologica Sinica, 28, 150-156. |
[冯玉龙, 曹坤芳, 冯志立 (2004). 夜间低温对不同光强下生长的两种沟谷雨林树苗荧光参数的影响. 植物生态学报, 28, 150-156.]
DOI |
|
[4] | Gao J, Li P, Ma F, Goltsev V (2014). Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection. Journal of Photochemistry and Photobiology B: Biology, 137, 144-150. |
[5] | Jin LQ, Che XK, Zhang ZS, Gao HY (2015). The relationship between the changes in Wk and different damage degree of PSII donor side and acceptor side under high temperature with high light in cucumber. Plant Physiology Journal, 51, 969-976. |
[金立桥, 车兴凯, 张子山, 高辉远 (2015). 高温、强光下黄瓜叶PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 51, 969-976.] | |
[6] |
Krieger-Liszkay A (2005). Singlet oxygen production in photosynthesis. Journal of Experimental Botany, 56, 337-346.
PMID |
[7] | Li PM, Gao HY, Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 31, 559-566. |
[李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[8] |
Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L (2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. Chinese Journal of Plant Ecology, 38, 720-728.
DOI |
[李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 (2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.]
DOI |
|
[9] | Luo J, Ding XY, Xu YN, Wang JY, Zhang Q, Sun S, Li YT, Gao HY, Zhang ZS (2022). Effects of growth light intensity on the activity of photosystem in cucumber leaves. Plant Physiology Journal, 58, 1790-1800. |
[罗蛟, 丁新宇, 徐燕妮, 王俊彦, 张强, 孙山, 李玉婷, 高辉远, 张子山 (2022). 生长光强对黄瓜叶片光合机构活性影响研究. 植物生理学报, 58, 1790-1800.] | |
[10] | Luo J, Li Y, Li YT, Zhao WJ, Xu YN, Zhao SJ, Zhang ZS, Gao HY (2021). Effects of six plant growth regulators on photoinhibition of photosystem II and photosystem I in in vitro Cucumis sativus leaves under light and temperature stress. Plant Physiology Journal, 57, 178-186. |
[罗蛟, 李滢, 李玉婷, 赵文静, 徐燕妮, 赵世杰, 张子山, 高辉远 (2021). 六种植物生长调节剂对光温胁迫下离体黄瓜叶片光系统II和光系统I光抑制的影响. 植物生理学报, 57, 178-186.] | |
[11] | Mattila H, Tyystjärvi E (2022). Light-induced damage to photosystem II at a very low temperature (195 K) depends on singlet oxygen. Physiologia Plantarum, 174, e13824. DOI: 10.1111/ppl.13824. |
[12] | Ren LL, Gao HY (2007). Effects of chilling stress under weak light on functions of photosystems in leaves of wild soybean and cultivar soybean. Journal of Plant Physiology and Molecular Biology, 33, 333-340. |
[任丽丽, 高辉远 (2007). 低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响. 植物生理与分子生物学学报, 33, 333-340.] | |
[13] |
Ruban AV (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903-1916.
DOI PMID |
[14] |
Schansker G, Srivastava A, Govindjee, Strasser RJ (2003). Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30, 785-796.
DOI PMID |
[15] | Schansker G, Tóth SZ, Strasser RJ (2005). Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1706, 250-261. |
[16] | Sonoike K (2011). Photoinhibition of photosystem I. Physiologia Plantarum, 142, 56-64. |
[17] |
Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C (2016). Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiology, 171, 1626-1634.
DOI PMID |
[18] |
Takahashi S, Murata N (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13, 178-182.
DOI PMID |
[19] | Terashima I, Funayama S, Sonoike K (1994). The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193, 300-306. |
[20] | Tóth SZ, Schansker G, Strasser RJ (2005). In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1708, 275-282. |
[21] | Velitchkova M, Popova AV, Faik A, Gerganova M, Ivanov AG (2020). Low temperature and high light dependent dynamic photoprotective strategies in Arabidopsis thaliana. Physiologia Plantarum, 170, 93-108. |
[22] | Wu HM, Shuang SP, Zhang JY, Cun Z, Meng ZG, Li LG, Sha BC, Chen JW (2021). Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity. Chinese Journal of Plant Ecology, 45, 404-419. |
[武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文 (2021). 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制. 植物生态学报, 45, 404-419.]
DOI |
|
[23] | Zhang WT, Li PM (2024). A method for simultaneously measuring the actual photochemical efficiency of two light systems in plants under light. Plant Physiology Journal, 60, 1833-1840. |
[张雯婷, 李鹏民 (2024). 一种同步测量植物两个光系统光下实际光化学效率的方法. 植物生理学报, 60, 1833-1840.] | |
[24] | Zhang WT, Li PM (2015). Application of simultaneous measurement of prompt and delayed chlorophyll fluorescence and the 820 nm reflection kinetics in photosynthesis study. Acta Biophysica Sinica, 31, 221-229. |
[张雯婷, 李鹏民 (2015). 瞬时与延迟叶绿素荧光及820 nm光反射动力学同步测量技术在光合作用研究中的应用. 生物物理学报, 31, 221-229.] | |
[25] | Zhang WT, Zhang GY, Pei GL, Li PM (2024). Comparison of phytochemistry capacity between fruit peel and leaf using simultaneous measurements of prompt fluorescence, delayed fluorescence and 820 nm light reflection. Plant Physiology Journal, 60, 887-894. |
[张雯婷, 张国云, 裴国亮, 李鹏民 (2024). 利用瞬时和延迟荧光及820 nm光反射同步测量技术比较果皮与叶片的原初光化学反应能力. 植物生理学报, 60, 887-894.] | |
[26] | Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011). Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889. |
[27] | Zhang ZS, Yang C, Gao HY (2013). Chilling photoinhibition of photosystem I and its recovery after photoinhibition. Plant Physiology Journal, 49, 301-308. |
[张子山, 杨程, 高辉远 (2013). 植物光系统I的低温光抑制及恢复. 植物生理学报, 49, 301-308.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn