Chin J Plant Ecol ›› 2006, Vol. 30 ›› Issue (6): 969-975.DOI: 10.17521/cjpe.2006.0124
• Research Articles • Previous Articles Next Articles
WANG Kun1,2,3(), LIU Ying-Hui1, GAO Qiong1,*(
), MO Xing-Guo2
Received:
2006-01-09
Accepted:
2006-04-14
Online:
2006-01-09
Published:
2006-11-30
Contact:
GAO Qiong
WANG Kun, LIU Ying-Hui, GAO Qiong, MO Xing-Guo. PARAMETER ANALYSIS AND SCALING OF PLANT ROOT HYDRAULIC REDISTRIBUTION MODEL[J]. Chin J Plant Ecol, 2006, 30(6): 969-975.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2006.0124
参数名称 Parameters | 符号 Symbol | 数值 Value | 单位 Unit | |
---|---|---|---|---|
饱和容积含水量 Volumetric soil water content at saturation | θs | 0.5 | cm3·cm-3 | |
剩余容积含水量 Residual volumetric soil water content | θr | 0.02 | cm3·cm-3 | |
土壤饱和导水率 Soil hydraulic conductivity | Ks | 0.247 | cm·h-1 | |
全部活跃根系的最大径向导度 Root conductivity for water for all roots | CRT | 0.097 | cm·MPa-1·h-1 | |
根系导度降至50%时的土壤水势 Soil ψ/water potential where root conductivity reduced by 50% | ψ50 | -1.0 | MPa | |
最大蒸腾速率 Maximum transpiration rate | ERT,max | 1 | cm·d-1 | |
形状指数 Shaping parameter | b | 3.22 | ||
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | a | 0.001 851 | cm-1 | |
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | n | 1.429 2 |
Table 1 Parameters of the model
参数名称 Parameters | 符号 Symbol | 数值 Value | 单位 Unit | |
---|---|---|---|---|
饱和容积含水量 Volumetric soil water content at saturation | θs | 0.5 | cm3·cm-3 | |
剩余容积含水量 Residual volumetric soil water content | θr | 0.02 | cm3·cm-3 | |
土壤饱和导水率 Soil hydraulic conductivity | Ks | 0.247 | cm·h-1 | |
全部活跃根系的最大径向导度 Root conductivity for water for all roots | CRT | 0.097 | cm·MPa-1·h-1 | |
根系导度降至50%时的土壤水势 Soil ψ/water potential where root conductivity reduced by 50% | ψ50 | -1.0 | MPa | |
最大蒸腾速率 Maximum transpiration rate | ERT,max | 1 | cm·d-1 | |
形状指数 Shaping parameter | b | 3.22 | ||
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | a | 0.001 851 | cm-1 | |
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | n | 1.429 2 |
参数名称 Parameters | 原模型 Model | 尺度转换后 Scaling |
---|---|---|
饱和水分导度 Soil hydraulic conductivity | 0.247 cm·h-1 | 0.247×24 cm·h-1 |
根系的最大水分导度 Root conductivity for water for all roots | 0.097 cm·MPa-1·h-1 | 0.097×24 cm·MPa-1·h-1 |
最大蒸腾速率 Maximum transpiration rate | 1/24 cm·d-1 | 1 cm·d-1 |
根系水力再分配调节系数 Multiplier for day (1) or night (0) | 1(10 h)~0(14 h) | 10/24 |
Table 2 Parameter changes when scaling
参数名称 Parameters | 原模型 Model | 尺度转换后 Scaling |
---|---|---|
饱和水分导度 Soil hydraulic conductivity | 0.247 cm·h-1 | 0.247×24 cm·h-1 |
根系的最大水分导度 Root conductivity for water for all roots | 0.097 cm·MPa-1·h-1 | 0.097×24 cm·MPa-1·h-1 |
最大蒸腾速率 Maximum transpiration rate | 1/24 cm·d-1 | 1 cm·d-1 |
根系水力再分配调节系数 Multiplier for day (1) or night (0) | 1(10 h)~0(14 h) | 10/24 |
[1] |
Brooks JR, Meinzer FC, Warren JM, Domec JC, Coulombe R (2006). Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant, Cell and Environment, 29,138-150.
DOI URL PMID |
[2] |
Caldwell MM, Dawson TE, Richards JH (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113,151-161.
URL PMID |
[3] |
Caldwell MM, Richards JH (1989). Hydraulic lift water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia, 79,1-5.
DOI URL PMID |
[4] |
Dawson TE (1993). Hydraulic lift and water use by plants: implications for water balance, performace and plant-plant interactions. Oecologia, 95,565-574.
DOI URL PMID |
[5] | Fan XL(樊小林), Shi WG(石卫国), Cao XH(曹新华) (1995). Hydraulic lift and its effect on soil water potential and nutrient availability. Ⅰ. Hydraulic lift of millet and the effect of HL and root absorption on soil water content. Journal of Soil and Water Conservation (水土保持学报), 9(4),36-42. (in Chinese with English abstract) |
[6] | Fan XL(樊小林), Cao XH(曹新华), Guo LB(郭立斌), Qin FL(秦芳玲) (1996). Hydraulic lift and its effect on soil water potential and nutrient availability. Ⅱ. Effect of the interaction of soil water and nutrient and hydraulic lift on the plant growth. Journal of Soil Erosion and Soil and Water Conservation (土壤侵蚀与水土保持学报), 2(4),71-76. (in Chinese with English abstract) |
[7] | Gao QZ(高清竹) (2003). Land Use Security Pattern for Farming-Pastoral Zone of North China, a Case Study at Changchuan Watershed(农牧交错带长川流域土地利用安全格局研究). PhD dissertation, Beijing Normal University, Beijing,19-51. (in Chinese with English abstract) |
[8] | Han WX(韩文轩), Fang JY(方精云) (2003). Allometry and its application in ecological scaling. Acta Scientiarum Naturalium Universitatis Pekinensis (北京大学学报(自然科学版)), 39,583-593. (in Chinese with English abstract) |
[9] |
Horton JL, Hart SC (1998). Hydraulic lift—a potentially important ecosystem process. Trends in Ecology and Evolution, 13,232-235.
URL PMID |
[10] | Jia HK(贾海坤), Liu YH(刘颖慧), Xu X(徐霞), Wang K(王昆), Gao Q(高琼) (2005). Intermedia woodland in Huangfuchuan watershed: relationships among slope, aspect, plant density and soil water content. Acta Phytoecologica Sinica(植物生态学报), 29,910-917. (in Chinese with English abstract) |
[11] | King AW (1990). Translating models across scales in the landscape. In: Turner MG, Gardner RH eds. Quantitative Methods in Landscape Ecology, Ecological Studies. Springer, New York, 82,479-517. |
[12] | Lee JE, Oliveira RS, Dawson TE, Fung I (2005). Root functioning modifies seasonal climate. Proceedings of National Academy of Sciences of the United States of America, 102,17576-17581. |
[13] | Leffler AJ, Peek MS, Ryel RJ, Ivans CY, Caldwell MM (2005). Hydraulic redistribution through the root systems of senesced plants. Ecology, 86,633-642. |
[14] | Lü YH(吕一河), Fu BJ(傅伯杰) (2001). Ecological scale and scaling. Acta Ecologia Sinica(生态学报), 21,2096-2105. (in Chinese with English abstract) |
[15] |
Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG, Warren JM (2004). Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiology, 24,919-928.
URL PMID |
[16] |
Richards JH, Caldwell MM (1987). Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73,486-489.
DOI URL PMID |
[17] |
Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130,173-184.
URL PMID |
[18] |
Schulze ED, Caldwell MM, Canadell J, Mooney HA, Jackson RB, Parson D, Scholes R, Sala OE, Trimborn P (1998). Downward flux of water through roots (i.e. inverse hydraulic lift)in dry Kalahari sands. Oecologia, 115,460-462.
DOI URL PMID |
[19] | Smart DR, Carlisle E, Goebel M, Nú†en BA (2005). Transverse hydraulic redistribution by a grapevine. Plant, Cell and Environment, 28,157-166. |
[20] | van Genuchten MT (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44,892-898. |
[21] | Yang J(杨吉力), Gao QZ(高清竹), Li GQ(李国强), He LH(何立环), Jin ZP(金争平), Wang ZW(王正文) (2002). A study on the water ecology of dominant artificial shrubs in Huangfuchuan watershed. Journal of Natural Resources (自然资源学报), 17,87-94. (in Chinese with English abstract) |
[22] |
Zou CB, Barnes PW, Archer S, McMurtry CR (2005). Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters. Oecologia, 145,32-40.
DOI URL PMID |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[3] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[4] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[5] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
[6] | LIU Yang, MA Xu, DI Nan, ZENG Zi-Hang, FU Hai-Man, LI Xin, XI Ben-Ye. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chin J Plant Ecol, 2023, 47(1): 123-133. |
[7] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[8] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[9] | LI Lu, JIN Guang-Ze, LIU Zhi-Li. Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 687-699. |
[10] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
[11] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[12] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[13] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[14] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[15] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn