Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (10): 1038-1049.DOI: 10.3724/SP.J.1258.2011.01038
• Research Articles • Previous Articles Next Articles
ZHANG Zhong-Hua1,2, HU Gang1, ZHU Jie-Dong3,4, NI Jian2,3,*()
Received:
2010-12-06
Accepted:
2011-01-31
Online:
2011-12-06
Published:
2011-11-07
Contact:
NI Jian
ZHANG Zhong-Hua, HU Gang, ZHU Jie-Dong, NI Jian. Spatial heterogeneity of soil nutrients and its impact on tree species distribution in a karst forest of Southwest China[J]. Chin J Plant Ecol, 2011, 35(10): 1038-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.01038
土壤养分 Soil nutrient | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准偏差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|
有机质 Organic matter (%) | 24.169 | 4.245 | 11.338 | 3.884 | 34.3 |
全氮 Total nitrogen (%) | 0.844 | 0.241 | 0.421 | 0.124 | 29.4 |
全磷 Total phosphorus (%) | 0.435 | 0.021 | 0.064 | 0.041 | 63.7 |
全钾 Total potassium (%) | 0.310 | 0.027 | 0.181 | 0.069 | 38.2 |
全钙 Total calcium (%) | 1.960 | 0.045 | 0.582 | 0.435 | 74.7 |
全镁 Total magnesium (%) | 0.244 | 0.017 | 0.125 | 0.056 | 45.2 |
碱解氮 Available nitrogen (mg·kg-1) | 277.000 | 79.430 | 187.583 | 41.863 | 22.3 |
速效磷 Available phosphorus (mg·kg-1) | 19.197 | 1.220 | 6.455 | 3.836 | 59.4 |
速效钾 Available potassium (mg·kg-1) | 148.320 | 14.410 | 50.145 | 22.524 | 44.9 |
pH | 7.61 | 5.02 | 6.54 | 0.774 | 11.8 |
Table 1 Descriptive statistics of soil nutrients
土壤养分 Soil nutrient | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准偏差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|
有机质 Organic matter (%) | 24.169 | 4.245 | 11.338 | 3.884 | 34.3 |
全氮 Total nitrogen (%) | 0.844 | 0.241 | 0.421 | 0.124 | 29.4 |
全磷 Total phosphorus (%) | 0.435 | 0.021 | 0.064 | 0.041 | 63.7 |
全钾 Total potassium (%) | 0.310 | 0.027 | 0.181 | 0.069 | 38.2 |
全钙 Total calcium (%) | 1.960 | 0.045 | 0.582 | 0.435 | 74.7 |
全镁 Total magnesium (%) | 0.244 | 0.017 | 0.125 | 0.056 | 45.2 |
碱解氮 Available nitrogen (mg·kg-1) | 277.000 | 79.430 | 187.583 | 41.863 | 22.3 |
速效磷 Available phosphorus (mg·kg-1) | 19.197 | 1.220 | 6.455 | 3.836 | 59.4 |
速效钾 Available potassium (mg·kg-1) | 148.320 | 14.410 | 50.145 | 22.524 | 44.9 |
pH | 7.61 | 5.02 | 6.54 | 0.774 | 11.8 |
土壤养分 Soil nutrient | 模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0 + C) | 块金值/基台值 C0/(C0 + C) | 变程 Rang (a) | R2 |
---|---|---|---|---|---|---|
有机质 Organic matter (%) | 指数模型 Exponential model | 12.76 | 25.53 | 0.450 | 310.90 | 0.573 |
全氮 Total nitrogen (%) | 线性模型 Linear model | 0.015 1 | 0.015 1 | 1.000 | 98.70 | 0.464 |
全磷 Total phosphorus (%) | 球状模型 Spherical model | 0.000 2 | 0.006 6 | 0.030 | 219.40 | 0.967 |
全钾 Total potassium (%) | 球状模型 Spherical model | 0.000 0 | 0.009 9 | 0.000 | 151.80 | 0.974 |
全钙 Total calcium (%) | 球状模型 Spherical model | 0.070 0 | 0.204 0 | 0.343 | 56.20 | 0.780 |
全镁 Total magnesium (%) | 球状模型 Spherical model | 0.000 3 | 0.004 1 | 0.073 | 78.40 | 0.972 |
碱解氮 Available nitrogen (mg·kg-1) | 线性模型 Linear model | 1 718.2 | 1 718.2 | 1.000 | 98.07 | 0.495 |
速效磷 Available phosphorus (mg·kg-1) | 指数模型 Exponential model | 0.038 5 | 0.081 3 | 0.474 | 74.30 | 0.912 |
速效钾 Available potassium (mg·kg-1) | 指数模型 Exponential model | 12.19 | 24.39 | 0.450 | 285.30 | 0.741 |
pH | 球状模型 Spherical model | 0.182 | 0.744 | 0.245 | 83.90 | 0.960 |
Table 2 Fitted model types and parameters for semivariograms of soil nutrients
土壤养分 Soil nutrient | 模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0 + C) | 块金值/基台值 C0/(C0 + C) | 变程 Rang (a) | R2 |
---|---|---|---|---|---|---|
有机质 Organic matter (%) | 指数模型 Exponential model | 12.76 | 25.53 | 0.450 | 310.90 | 0.573 |
全氮 Total nitrogen (%) | 线性模型 Linear model | 0.015 1 | 0.015 1 | 1.000 | 98.70 | 0.464 |
全磷 Total phosphorus (%) | 球状模型 Spherical model | 0.000 2 | 0.006 6 | 0.030 | 219.40 | 0.967 |
全钾 Total potassium (%) | 球状模型 Spherical model | 0.000 0 | 0.009 9 | 0.000 | 151.80 | 0.974 |
全钙 Total calcium (%) | 球状模型 Spherical model | 0.070 0 | 0.204 0 | 0.343 | 56.20 | 0.780 |
全镁 Total magnesium (%) | 球状模型 Spherical model | 0.000 3 | 0.004 1 | 0.073 | 78.40 | 0.972 |
碱解氮 Available nitrogen (mg·kg-1) | 线性模型 Linear model | 1 718.2 | 1 718.2 | 1.000 | 98.07 | 0.495 |
速效磷 Available phosphorus (mg·kg-1) | 指数模型 Exponential model | 0.038 5 | 0.081 3 | 0.474 | 74.30 | 0.912 |
速效钾 Available potassium (mg·kg-1) | 指数模型 Exponential model | 12.19 | 24.39 | 0.450 | 285.30 | 0.741 |
pH | 球状模型 Spherical model | 0.182 | 0.744 | 0.245 | 83.90 | 0.960 |
土壤养分 Soil nutrient | 海拔 Elevation | 坡度 Slope | 坡向 Slope aspect | 坡位 Slope location | 岩石裸露率 Rock-bareness rate |
---|---|---|---|---|---|
有机质 Organic matter (%) | 0.227* | -0.167 | -0.078 | 0.183 | -0.309** |
全氮 Total nitrogen (%) | -0.117 | 0.058 | 0.054 | -0.048 | -0.168 |
全磷 Total phosphorus (%) | -0.237* | 0.143 | 0.175 | -0.033 | -0.227** |
全钾 Total potassium (%) | -0.754** | 0.332** | 0.441** | -0.797** | 0.559** |
全钙 Total calcium (%) | -0.614** | 0.405** | 0.384** | -0.643** | 0.594** |
全镁 Total magnesium (%) | -0.449** | 0.324** | 0.429** | -0.532** | 0.474** |
碱解氮 Available nitrogen (mg·kg-1) | 0.092 | 0.093 | -0.131 | 0.164 | 0.083 |
速效磷 Available phosphorus (mg·kg-1) | -0.141 | 0.137 | 0.251* | -0.222* | 0.278** |
速效钾 Available potassium (mg·kg-1) | -0.087 | -0.038 | -0.190 | -0.013 | -0.058 |
pH | -0.583** | 0.306** | 0.223* | -0.589** | 0.481** |
Table 3 Correlationship between soil nutrients and topography factors
土壤养分 Soil nutrient | 海拔 Elevation | 坡度 Slope | 坡向 Slope aspect | 坡位 Slope location | 岩石裸露率 Rock-bareness rate |
---|---|---|---|---|---|
有机质 Organic matter (%) | 0.227* | -0.167 | -0.078 | 0.183 | -0.309** |
全氮 Total nitrogen (%) | -0.117 | 0.058 | 0.054 | -0.048 | -0.168 |
全磷 Total phosphorus (%) | -0.237* | 0.143 | 0.175 | -0.033 | -0.227** |
全钾 Total potassium (%) | -0.754** | 0.332** | 0.441** | -0.797** | 0.559** |
全钙 Total calcium (%) | -0.614** | 0.405** | 0.384** | -0.643** | 0.594** |
全镁 Total magnesium (%) | -0.449** | 0.324** | 0.429** | -0.532** | 0.474** |
碱解氮 Available nitrogen (mg·kg-1) | 0.092 | 0.093 | -0.131 | 0.164 | 0.083 |
速效磷 Available phosphorus (mg·kg-1) | -0.141 | 0.137 | 0.251* | -0.222* | 0.278** |
速效钾 Available potassium (mg·kg-1) | -0.087 | -0.038 | -0.190 | -0.013 | -0.058 |
pH | -0.583** | 0.306** | 0.223* | -0.589** | 0.481** |
Fig. 4 Ordination of the main species samples and soil nutrients in the canonical correspondence analysis (CCA) biplot. Acfa, Acer fabri; Aica, Aidia canthioides; Caca, Castanopsis carlesii var. spinulosa; Cafu, Camellia furfuracea; Capu, Carpinus pubescens; Ciwi, Cinnamomum wilsonii; Cldu, Clausena dunniana; Cych, Cyclobalanopsis championii; Cygl, Cyclobalanopsis glauca; Cymy, Cyclobalanopsis myrsinaefolia; Daol, Daphniphyllum oldhami; Dimy, Distylium myricoides; Enro, Engelhardtia roxburghiana; Erhe, Eriobotrya henryi; Eumy, Euonymus myrianthus; Ilfi, Ilex ficoidea; Laja, Lasianthus japonicus var. lancilimbus; Lico, Lindera communis; Lina, Lindera nacusua; Lihe, Lithocarpus henryi; Mefo, Meliosma fordii; Neau, Neolitsea aurata; Osfr, Osmanthus fragrans; Pllo, Platycarya longipes; Rane, Rapanea neriifolia; Regl, Reevesia glaucophylla; Rhla, Rhododendron latoucheae; Slsi, Sloanea sinensis; Syla, Symplocos lancifolia; Sysu, Symplocos sumuntia.
[1] | Bao SD (鲍士旦) (2000). Soil and Agricultural Chemistry Analysis (土壤农化分析). China Agriculture Press, Beijing. (in Chinese) |
[2] | Brady NC, Weil RR (1999). The Nature and Properties of Soils. Prentice-Hall, Upper Saddle River, New Jersey. |
[3] |
Critchley CNR, Chambers BJ, Fowbert JA, Sanderson RA, Bhogal A, Rose SC (2002). Association between lowland grassland plant communities and soil properties. Biological Conservation, 105, 199-215.
DOI URL |
[4] | Deng Y (邓艳), Jiang ZC (蒋忠诚), Cao JH (曹建华), Li Q (李强), Lan FN (蓝芙宁) (2004). Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst peak cluster areas in Nongla. Guihaia (广西植物), 24, 317-322. (in Chinese with English abstract) |
[5] | Du F (杜峰), Liang ZS (梁宗锁), Xu XX (徐学选), Zhang XC (张兴昌), Shan L (山仑) (2008). Spatial heterogeneity of soil nutrients and aboveground biomass in abandoned old-fields of Loess Hilly region in Northern Shanxi, China. Acta Ecologica Sinica (生态学报), 28, 13-22. (in Chinese with English abstract) |
[6] |
Enoki T, Kawaguchi H, Iwatsubo G (1996). Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecological Research, 11, 299-309.
DOI URL |
[7] |
Gallardo A (2003). Spatial variability of soil properties in a floodplain forest in northwest Spain. Ecosystems, 6, 564-576.
DOI URL |
[8] | Gamma Design Software (2002). GS+ Geostatistics for the Environmental Sciences version 5.3.2. Gamma Design Software, Michigan, USA. |
[9] |
Härdtle W, von Oheimb G, Westphal C (2005). Relationships between the vegetation and soil conditions in beech and beech-oak forests of northern Germany. Plant Ecology, 177, 113-124.
DOI URL |
[10] | Hu ZL (胡忠良), Pan GX (潘根兴), Li LQ (李恋卿), Du YX (杜有新), Wang XZ (王新洲) (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica (生态学报), 29, 4187-4194. (in Chinese with English abstract) |
[11] |
Imhoff S, da Silva AP, Tormena CA (2000). Spatial heterogeneity of soil properties in areas under elephant-grass short-duration grazing system. Plant and Soil, 219, 161-168.
DOI URL |
[12] |
Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillant F, Oomes MJM (1998). Relationship between soil chemical factors and grassland diversity. Plant and Soil, 202, 69-78.
DOI URL |
[13] |
Jirka S, McDonald AJ, Johnson MS, Feldpausch TR, Couto EG, Riha SJ (2007). Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon. Journal of Vegetation Science, 18, 183-194.
DOI URL |
[14] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104, 864-869. |
[15] | Jongman RH, Ter Braak CJF, van Tongeren OFR (1995). Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, UK. 137-144. |
[16] |
Kleb HR, Wilson SD (1997). Vegetation effects on soil resource heterogeneity in prairie and forest. The American Naturalist, 150, 283-298.
DOI URL |
[17] |
Lalley JS, Viles HA, Copeman N, Cowley C (2006). The influence of multi-scale environmental variables on the distribution of terricolous lichens in a fog desert. Journal of Vegetation Science, 17, 831-838.
DOI URL |
[18] | Li EX (李恩香), Jiang ZC (蒋忠诚), Cao JH (曹建华), Jiang GH (姜光辉), Deng Y (邓艳) (2004). The comparison of properties of karst soil and erosion ratio under different successional stages of karst vegetation in karst Nongla. Acta Ecologica Sinica (生态学报), 24, 1131-1139. (in Chinese with English abstract) |
[19] |
Li HB, Reynolds JF (1995). On definition and quantification of heterogeneity. Oikos, 73, 280-284.
DOI URL |
[20] | Li YB (李阳兵), Wang SJ (王世杰), Xie DT (谢德体), Shao JA (邵景安) (2004). Landscape ecological characteristics and ecological construction of karst mountain areas in Southwest China. Ecology and Environment (生态环境), 13, 702-706. (in Chinese with English abstract) |
[21] |
Lin HS, Wheeler D, Bell J, Wilding L (2005). Assessment of soils spatial variability at multiple scales. Ecological Modelling, 182, 271-290.
DOI URL |
[22] | Liu F (刘方), Wang SJ (王世杰), Luo HB (罗海波), Liu YS (刘元生), Liu HY (刘鸿雁) (2008). Micro-habitats in karst forest ecosystem and variability of soils. Acta Pedologica Sinica (土壤学报), 45, 1055-1062. (in Chinese with English abstract) |
[23] | Liu L (刘璐), Zeng FP (曾馥平), Song TQ (宋同清), Peng WX (彭晚霞), Wang KL (王克林), Qin WG (覃文更), Tan WN (谭卫宁) (2010). Spatial heterogeneity of soil nutrients in karst area’s Mulun National Nature Reserve. Chinese Journal of Applied Ecology (应用生态学报), 21, 1667-1673. (in Chinese with English abstract) |
[24] |
Lundholm JT, Larson DW (2003). Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavement. Ecography, 26, 715-722.
DOI URL |
[25] |
Maestre FT, Cortina J (2002). Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant and Soil, 241, 279-291.
DOI URL |
[26] | Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009). Vegan: 01空间自相关,而有机质、全钙、速效磷和速效钾的community ecology package. http://cran.r-project.org/web/packages/vegan/index.Html. Cited 12 Oct. 2010. |
[27] | Peng WX (彭晚霞), Song TQ (宋同清), Zeng FP (曾馥平), Wang KL (王克林), Fu W (傅伟), Liu L (刘璐), Du H (杜虎), Lu SY (鹿士杨), Yin QC (殷庆仓) (2010). The coupling relationships between vegetation, soil, and topography factors in karst mixed evergreen and deciduous broadleaf forest. Acta Ecologica Sinica (生态学报), 30, 3472-3481. (in Chinese with English abstract) |
[28] | R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/. Cited 12 Oct. 2010. |
[29] |
Raghubanshi AS (1992). Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest. Soil Biology and Biochemistry, 24, 145-150.
DOI URL |
[30] |
Rossi RD, Mulla DJ, Journel ÁG, Franz EH (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62, 277-314.
DOI URL |
[31] |
Sauer TJ, Cambardella CA, Meek DW (2006). Spatial variation of soil properties relating to vegetation changes. Plant and Soil, 280, 1-5.
DOI URL |
[32] |
Sollins P (1998). Factors influencing species composition in tropical lowland rain forest: Does soil matter? Ecology, 79, 23-30.
DOI URL |
[33] |
Song TQ (宋同清), Peng WX (彭晚霞), Zeng FP (曾馥平), Wang KL (王克林), Qin WG (覃文更), Tan WN (谭卫宁), Liu L (刘璐), Du H (杜虎), Lu SY (鹿士杨) (2010). Spatial pattern of forest communities and environmental interpretation in Mulun National Nature Reserve, karst cluster-peak depression region. Chinese Journal of Plant Ecology (植物生态学报), 34, 298-308. (in Chinese with English abstract)
DOI URL |
[34] |
Tateno R, Takeda H (2003). Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research, 18, 559-571.
DOI URL |
[35] |
Tilman D (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2-16.
DOI URL |
[36] |
Wang LX, Mou PP, Huang JH, Wang J (2007). Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant and Soil, 295, 137-150.
DOI URL |
[37] | Wang SJ (王世杰) (2003). The most serious eco-geologically environmental problem in southwestern China — karst rocky desertification. Bulletin of Mineralogy Petrology and Geochemistry (矿物岩石地球化学通报), 22, 120-126. (in Chinese with English abstract) |
[38] | Wang SY (王淑英), Lu P (路苹), Wang JL (王建立), Yang L (杨柳), Yang K (杨凯), Yu TQ (于同泉) (2008). Spatial variability and distribution of soil organic matter and total nitrogen at different scales: a case study in Pinggu County, Beijing. Acta Ecologica Sinica (生态学报), 28, 4957-4964. (in Chinese with English abstract) |
[39] | Wang ZQ (王政权) (1999). Geostatistics and Its Application in Ecology (地统计学及在生态学中的应用). Science Press, Beijing. (in Chinese) |
[40] |
Weiner J, Wright DB, Castro S (1997). Symmetry of below- ground competition between Kochia scoparia individuals. Oikos, 79, 85-91.
DOI URL |
[41] |
Wijesinghe DK, John EA, Hutchings MJ (2005). Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. Journal of Ecology, 93, 99-112.
DOI URL |
[42] |
Wu HY (吴海勇), Zeng FP (曾馥平), Song TQ (宋同清), Peng WX (彭晚霞), Li XH (黎星辉), Ouyang ZW (欧阳资文) (2009). Spatial variations of soil organic carbon and nitrogen in peak-cluster depression areas of karst region. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 15, 1029-1036. (in Chinese with English abstract)
DOI URL |
[43] | Yavitt JB, Harms KE, Garcia MN, Wright SJ, He F, Mirabello MJ (2009). Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47, 674-687. |
[44] | Zhang W (张伟), Chen HS (陈洪松), Wang KL (王克林), Zhang JY (张继光), Hou Y (侯娅) (2007). Spatial variability of soil organic carbon and available phosphorus in a typical karst depression, northwest of Guangxi. Acta Ecologica Sinica (生态学报), 27, 5168-5175. (in Chinese with English abstract) |
[45] | Zhang W (张伟), Chen HS (陈洪松), Wang KL (王克林), Su YR (苏以荣), Zhang JG (张继光), Yi AJ (易爱军) (2006). The heterogeneity and its influencing factors of soil nutrients in peak-cluster depression areas of karst region. Scientia Agricultura Sinica (中国农业科学), 40, 1829-1835. (in Chinese with English abstract) |
[46] | Zhang ZH (张忠华), Hu G (胡刚), Ni J (倪健) (2010). Interspecific segregation of old-growth karst forests in Maolan, Southwest China. Acta Ecologica Sinica (生态学报), 30, 2235-2245. (in Chinese with English abstract) |
[47] |
Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J (2010). Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 25, 1151-1160.
DOI URL |
[48] | Zhou YC (周运超), Pan GX (潘根兴) (2001). Adaptation and adjustment of Maolan forest ecosystem to karst environment. Carsologica Sinica (中国岩溶), 20, 47-52. (in Chinese with English abstract) |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 6318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 5570
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn