Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (6): 471-479.DOI: 10.17521/cjpe.2019.0021
• Review • Next Articles
HUANG Mei1,*(),WANG Na1,2,WANG Zhao-Sheng1,GONG He1
Received:
2019-01-22
Revised:
2019-04-02
Online:
2019-06-20
Published:
2019-04-23
Contact:
HUANG Mei
Supported by:
HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems[J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0021
模型 Model | 磷库数量 Number of phosphate pools | 时间步长 Time step | 碳磷比参数 C:P ratio parameters | 矿化过程模拟 Simulation of the mineralization process | 适用范围 Scope of application |
---|---|---|---|---|---|
CASA-CNP | 12 | 1 d | 不同植被类型、植物不同器官具有不同的碳磷比 C:P ratios vary among different organs in various vegetation types | 只量化了生物化学矿化过程 Only consider the biochemical mineralization process | 温带和热带森林生态系统 温带和热带草原生态系统 Temperate and tropical forest and grassland ecosystems |
CLM-CNP | 15 | 30 min | 不同植被类型、植物不同器官具有不同的碳磷比 C:P ratios vary among different organs in various vegetation types | 模拟了生物矿化与生物化学矿化两个过程 Consider both biomineralization and biochemical mineralization | 热带森林生态系统 热带草原生态系统 Tropical forest and grassland ecosystems |
JSBACH-CNP | 8 | 1 d | 不同植被类型具有不同碳磷比, 但植物不同器官的碳磷比相同 C:P ratios are the same for organs but vary among various vegetation types | 模拟了生物矿化与生物化学矿化两个过程 Consider both biomineralization and biochemical mineralization | 温带和热带森林生态系统 温带和热带草原生态系统 Temperate and tropical forest and grassland ecosystems |
Table 1 Comparison of phosphorus processes in CASA-CNP, CLM-CNP, and JSBACH-CNP
模型 Model | 磷库数量 Number of phosphate pools | 时间步长 Time step | 碳磷比参数 C:P ratio parameters | 矿化过程模拟 Simulation of the mineralization process | 适用范围 Scope of application |
---|---|---|---|---|---|
CASA-CNP | 12 | 1 d | 不同植被类型、植物不同器官具有不同的碳磷比 C:P ratios vary among different organs in various vegetation types | 只量化了生物化学矿化过程 Only consider the biochemical mineralization process | 温带和热带森林生态系统 温带和热带草原生态系统 Temperate and tropical forest and grassland ecosystems |
CLM-CNP | 15 | 30 min | 不同植被类型、植物不同器官具有不同的碳磷比 C:P ratios vary among different organs in various vegetation types | 模拟了生物矿化与生物化学矿化两个过程 Consider both biomineralization and biochemical mineralization | 热带森林生态系统 热带草原生态系统 Tropical forest and grassland ecosystems |
JSBACH-CNP | 8 | 1 d | 不同植被类型具有不同碳磷比, 但植物不同器官的碳磷比相同 C:P ratios are the same for organs but vary among various vegetation types | 模拟了生物矿化与生物化学矿化两个过程 Consider both biomineralization and biochemical mineralization | 温带和热带森林生态系统 温带和热带草原生态系统 Temperate and tropical forest and grassland ecosystems |
[1] | Achat DL, Bakker MR, Morel C (2009). Process-based assessment of phosphorus availability in a low phosphorus sorbing forest soil using isotopic dilution methods. Soil Science Society of America Journal, 73, 2131-2142. |
[2] | Aerts R, Chapin III FS (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] | Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG (2015). Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 206, 614-636. |
[4] | Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017). Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports, 7, 4686. DOI: 10.1038/s41598-017-04959-0. |
[5] | Bender L, Stiebeling B, Neumann KH (1986). Investigations on photosynthesis and assimilate translocation in Daucus carota L. as influenced by a varied phosphorus supply and changes in the endogenous hormonal system following GA3 treatments. Journal of Plant Nutrition and Soil Science, 149, 533-540. |
[6] | Bowman RA, Cole CV (1978). An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science, 125, 95-101. |
[7] | Campbell LB, Racz GJ (1975). Organic and inorganic P content, movement and mineralization of P in soil beneath a feedlot. Canadian Journal of Soil Science, 55, 457-466. |
[8] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. |
[9] | de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 12, 2077-2091. |
[10] | Deepika S, Kothamasi D (2015). Soil moisture—A regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza, 25, 67-75. |
[11] | Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Djagbletey G, Hien F, Compaore H, Diallo A, Grace J, Lloyd J (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33, 959-980. |
[12] | Dong XB, Hao MD, Guo SA, Shi XJ, Ma T, Liu GS (2014). The effects of nitrogen fertilizers and phosphate fertilizer rates on the yield, nutrient uptake and quality of Leymus chinensis. Acta Agrestia Sinica, 22, 1232-1238. |
[ 董晓兵, 郝明德, 郭胜安, 石学军, 马甜, 刘公社 (2014). 氮磷肥配施对羊草干草产量、养分吸收及品质影响. 草地学报, 22, 1232-1238.] | |
[13] | Ellsworth D, Crous KY, Lambers H, Cooke J (2015). Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell & Environment, 38, 1142-1156. |
[14] | Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin III FS, Ciais P, Malhi Y, Obersteiner M, Papale D, Piao SL, Reichstein M, Rodà F, Peñuelas J (2014). Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4, 471-476. |
[15] | Föllmi KB (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40, 55-124. |
[16] | Fredeen AL, Madhusudana Rao I, Terry N (2018). Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiology, 89, 225-230. |
[17] | Ghannoum O (2008). C4 photosynthesis and water stress. Annals of Botany, 103, 635-644. |
[18] | Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J, Reich PB, van Bodegom PM, Niinemets Ü (2012). Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 9, 3547-3569. |
[19] | Goll DS, Moosdorf N, Hartmann J, Brovkin V (2014). Climate driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance. Geophysical Research Letters, 41, 3553-3558. |
[20] | Hartmann J, Moosdorf N, Lauerwald R, Hinderer M, West AJ (2014). Global chemical weathering and associated P-release—The role of lithology, temperature and soil properties. Chemical Geology, 363, 145-163. |
[21] | Jiang J, Guo S, Zhang Y, Liu Q, Wang R, Wang Z, Li N, Li R (2015). Changes in temperature sensitivity of soil respiration in the phases of a three-year crop rotation system. Soil & Tillage Research, 150, 139-146. |
[22] | Johnson AH, Frizano J, Vann DR (2003). Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135, 487-499. |
[23] | Jungk A (2001). Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science, 164, 121-129. |
[24] | Li L, Huang M, Gu FX, Zhang L (2013). The modeling algorithms for the effects of nitrogen on terrestrial vegetation carbon cycle process. Journal of Natural Resources, 28, 2012-2022. |
[ 李雷, 黄玫, 顾峰雪, 张黎 (2013). 氮素影响陆地生态系统碳循环过程的模型表达方法. 自然资源学报, 28, 2012-2022.] | |
[25] | Liao H, Ge ZY, Yan XL (2001). Ideal root architecture for phosphorus absorption in plants under water-phosphorus coupling stress: Simulation and application. Chinese Science Bulletin, 46, 641-646. |
[ 廖红, 戈振扬, 严小龙 (2001). 水磷耦合胁迫下植物磷吸收的理想根构型: 模拟与应用. 科学通报, 46, 641-646.] | |
[26] | Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and stoichiometry in terrestrial ecosystems: A review. Chinese Journal of Plant Ecology, 36, 1205-1216. |
[ 刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.] | |
[27] | Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001). Global Biogeochemical Cycles in the Climate System. Academic Press, London. 96-144. |
[28] | Lu SY, Liu XX, Li K, Gao SH, Jia JL, Yang GY (2016). Phosphorus removal by ecological planting tank treating rainwater runoff. Chinese Journal of Environmental Engineering, 10, 3434-3438. |
[ 卢少勇, 刘学欣, 李珂, 高硕晗, 贾建丽, 杨光亚 (2016). 模拟生态种植槽去除雨水径流中的磷. 环境工程学报, 10, 3434-3438.], Kubilay N, Losno R, Luo C, Maenhaut U McGee KA, Okin GS, Siefert RL Tsukuda. | |
[29] | Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukud S (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 22, GB4026. DOI: 10.1029/2008GB003240. |
[30] | Mcgroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 85, 2390-2401. |
[31] | Meir P, Grace J, Miranda AC (2001). Leaf respiration in two tropical rainforests: Constraints on physiology by phosphorus, nitrogen and temperature. Functional Ecology, 15, 378-387. |
[32] | Monteith JL, Moss CJ (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281, 277-294. |
[33] | Newman EI (1995). Phosphorus inputs to terrestrial ecosystems. Journal of Ecology, 83, 713-726. |
[34] | Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013). Responses of root architecture development to low phosphorus availability: A review. Annals of Botany, 112, 391-408. |
[35] | Norby RJ, Gu L, Haworth IC, Jensen AM, Turner BL, Walker AP, Warren JM, Weston DJ, Xu C, Winter K (2017). Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. New Phytologist, 215, 1425-1437. |
[36] | Norby RJ, de Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, Mackenzie AR, Medlyn BE, Pavlick R, Ramming A, Smith B, Thomas R, Thonicke K, Walker AP, Yang X, Zaehle S (2015). Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209, 17-28. |
[37] | Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373. |
[38] | Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014). Biogenic volatile emissions from the soil. Plant, Cell & Environment, 37, 1866-1891. |
[39] | Pierrou U (1976). The global phosphorus cycle. Ecological Bulletins, 48(22), 75-88. |
[40] | Plaxton WC, Podestá FE (2006). The functional organization and control of plant respiration. Critical Reviews in Plant Sciences, 25, 159-198. |
[41] | Pote DH, Daniel TC (1996). Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Science Society of America Journal, 60, 855-859. |
[42] | Reed SC, Yang X, Thornton PE (2015). Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytologist, 208, 324-329. |
[43] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[44] | Scott JT, Condron LM (2005). Short term effects of radiata pine and selected pasture species on soil organic phosphorus mineralisation. Plant and Soil, 266, 153-163. |
[45] | Slot M, Rey-Sánchez C, Winter K, Kitajima K (2014). Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Functional Ecology, 28, 1074-1086. |
[46] | Smil V (2000). Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment, 25, 53-88. |
[47] | Spohn M, Zavišić A, Nassal P, Bergkemper F, Schulz S, Marhan S, Schloter M, Kandeler E, Polle A (2018). Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks. Soil Biology & Biochemistry, 117, 191-202. |
[48] | Stitt M, Hurry V (2002). A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology, 5, 199-206. |
[49] | Sun Y, Peng SS, Goll DS, Ciais P, Guenet B, Guimberteau M, Hinsinger P, Janssens IA, Peñuelas J, Piao SL, Poulter B, Violette A, Yang XJ, Yin Y, Zeng H (2017). Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth’s Future, 5, 730-749. |
[50] | Thomas DS, Montagu KD, Conroy JP (2006). Leaf inorganic phosphorus as a potential indicator of phosphorus status, photosynthesis and growth of Eucalyptus grandis seedlings. Forest Ecology and Management, 223, 267-274. |
[51] | Turner BL, Mahieu N, Condron LM (2003). Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America Journal, 67, 497-510. |
[52] | Ushio M, Fujiki Y, Hidaka A, Kitayama K (2015). Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Functional Ecology, 29, 1235-1245. |
[53] | van Wijk MT, Williams M, Gough L, Hobbie SE, Shaver GR (2003). Luxury consumption of soil nutrients: A possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? Journal of Ecology, 91, 664-676. |
[54] | Wan S, Hui D, Wallace L, Luo Y (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014. DOI: 10.1029/2004GB002315. |
[55] | Wang F, Song MH, Huang M, Zhang JS (2014). The spatial distribution of soil nutrients and the controlling factors of temperate forest and steppe in northeastern China. Ecology and Environmental Sciences, 23, 1280-1285. |
[ 王芳, 宋明华, 黄玫, 张甲珅 (2014). 东北北部温带森林和干草地土壤养分分布及影响因素. 生态环境学报, 23, 1280-1285.] | |
[56] | Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, Tao S (2015). Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience, 8, 48-54. |
[57] | Wang R, Sun QQ, Wang Y, Liu QF, Du LL, Zhao M, Gao X, Hu YX, Guo SL (2017). Temperature sensitivity of soil respiration: Synthetic effects of nitrogen and phosphorus fertilization on Chinese Loess Plateau. Science of the Total Environment, 574, 1665-1673. |
[58] | Wang YP, Houlton BZ, Field CB (2007). A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles, 21, GB1018. DOI: 10.1029/2006GB002797. |
[59] | Wang YP, Law RM, Pak B (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 2261-2282. |
[60] | Yan XF, Liu YY, Guo QW, Huang DW (2016). Nitrogen and phosphorus elimination by composited aggregate Bahia grass-planting concrete. Chinese Journal of Environmental Engineering, 10, 1171-1176. |
[ 严雄风, 刘迎云, 虢清伟, 黄大伟 (2016). 组合骨料型百喜草植生混凝土去除氮磷. 环境工程学报, 10, 1171-1176.] | |
[61] | Yan XL, Liao H, Ge ZY, Luo XW (2000). Root architectural characteristics and phosphorus acquisition efficiency in plants. Chinese Bulletin of Botany, 21, 511-519. |
[ 严小龙, 廖红, 戈振扬, 罗锡文 (2000). 植物根构型特性与磷吸收效率. 植物学通报, 21, 511-519.] | |
[62] | Yang X, Thornton PE, Ricciuto DM, Post WM (2014). The role of phosphorus dynamics in tropical forests—A modeling study using CLM-CNP. Biogeosciences, 11, 1667-1681. |
[63] | Zhang DS, Zhang CC, Tang XY, Li HG, Zhang FS, Rengel Z, Whalley WR, Davies WJ, Shen JB (2016). Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 209, 823-831. |
[64] | Zhang Q, Wang YP, Matear RJ, Pitman AJ, Dai YJ (2014). Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions. Geophysical Research Letters, 41, 632-637. |
[65] | Zhang YM, Zhou GS (2012). Primary simulation on the response of leaf maximum carboxylation rate to multiple environmental factors. Chinese Science Bulletin, 57, 1112-1118. |
[ 张彦敏, 周广胜 (2012). 植物叶片最大羧化速率对多因子响应的模拟. 科学通报, 57, 1112-1118.] | |
[66] | Zhao Q, Zeng DH (2005). Phosphorus cycling in terrestrial ecosystems and its controlling factors. Acta Phytoecologica Sinica, 29, 153-163. |
[ 赵琼, 曾德慧 (2005). 陆地生态系统磷素循环及其影响因素. 植物生态学报, 29, 153-163.] | |
[67] | Zhou ZH, Wang CK (2016). Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chinese Journal of Plant Ecology, 40, 1257-1266. |
[ 周正虎, 王传宽 (2016). 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40, 1257-1266.] |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[8] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[9] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[10] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[11] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[12] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[13] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[14] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[15] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn