Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (10): 1050-1058.DOI: 10.17521/cjpe.2020.0127
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
LI Jun-Jun1, LI Meng-Ru1, QI Xing-E1, WANG Li-Long2, XU Shi-Jian1,*()
Received:
2020-05-01
Accepted:
2020-07-10
Online:
2020-10-20
Published:
2020-11-30
Contact:
XU Shi-Jian
Supported by:
LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition[J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0127
氮磷比 N:P | 氮、磷供应量 N and P supply amount (g·m-2·a-1) | ||
---|---|---|---|
低养分添加水平 Low nutrient addition level | 中养分添加水平 Moderate nutrient addition level | 高养分添加水平 High nutrient addition level | |
5 | 1.50/0.30 | 4.50/0.90 | 13.50/2.70 |
15 | 1.50/0.10 | 4.50/0.30 | 13.50/0.90 |
25 | 1.50/0.06 | 4.50/0.18 | 13.50/0.54 |
Table 1 Experimental design on N and P addition treatments
氮磷比 N:P | 氮、磷供应量 N and P supply amount (g·m-2·a-1) | ||
---|---|---|---|
低养分添加水平 Low nutrient addition level | 中养分添加水平 Moderate nutrient addition level | 高养分添加水平 High nutrient addition level | |
5 | 1.50/0.30 | 4.50/0.90 | 13.50/2.70 |
15 | 1.50/0.10 | 4.50/0.30 | 13.50/0.90 |
25 | 1.50/0.06 | 4.50/0.18 | 13.50/0.54 |
Fig. 1 N, P addition levels and N:P in green and senescent leaves of Achnatherum splendens under different nutrient addition levels and N:P conditions. L, M and H represent low, moderate and high nutrient addition level, respectively. Different uppercase and lowercase letters indicate the significant difference among different treatments of senescent green leaves, respectively (p < 0.05).
Fig. 2 N, P contents and N:P in green (A-C) and senescent leaves(D-F) of Achnatherum splendens under different treatment conditions (mean ± SD). L, M and H represent low, moderate and high nutrient addition level, respectively. Different uppercase and lowercase letters indicate the significant difference among different treatments under the same soil nutrient addition level and the same soil N:P, respectively (p < 0.05).
氮磷比 N:P | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
5 | 0.200 | 0.470 | 0.020 | 0.740 | 0.030 | 0.730 | 0.140 | 0.540 | 0.950 | 0.020 | 0.690 | 0.160 | 0.410 | -0.310 | 0.080 | 0.610 | 0.450 | -0.290 | |
15 | 0.230 | -0.450 | 0.005 | 0.830 | 0.005 | 0.830 | 0.040 | 0.700 | 0.700 | 0.180 | 0.010 | 0.790 | 0.040 | -0.630 | 0.890 | -0.050 | 0.010 | -0.790 | |
25 | 0.330 | -0.370 | 0.020 | 0.730 | 0.020 | 0.750 | 0.990 | -0.010 | 0.020 | 0.740 | 0.030 | 0.720 | 0.000 | -0.920 | 0.900 | 0.050 | 0.002 | -0.880 |
Table 2 Pearson correlation analysis between nutrient addition level and leaves N, P contents and nutrient resorption efficiency of Achnatherum splendens at different N:P addition levels
氮磷比 N:P | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
5 | 0.200 | 0.470 | 0.020 | 0.740 | 0.030 | 0.730 | 0.140 | 0.540 | 0.950 | 0.020 | 0.690 | 0.160 | 0.410 | -0.310 | 0.080 | 0.610 | 0.450 | -0.290 | |
15 | 0.230 | -0.450 | 0.005 | 0.830 | 0.005 | 0.830 | 0.040 | 0.700 | 0.700 | 0.180 | 0.010 | 0.790 | 0.040 | -0.630 | 0.890 | -0.050 | 0.010 | -0.790 | |
25 | 0.330 | -0.370 | 0.020 | 0.730 | 0.020 | 0.750 | 0.990 | -0.010 | 0.020 | 0.740 | 0.030 | 0.720 | 0.000 | -0.920 | 0.900 | 0.050 | 0.002 | -0.880 |
养分添加水平 Nutritional addition level | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
低 Low | 0.660 | -0.170 | 0.390 | 0.330 | 0.020 | 0.740 | 0.560 | -0.230 | 0.410 | 0.320 | 0.060 | 0.290 | 0.260 | -0.420 | 0.000 | 0.940 | 0.030 | -0.720 | |
中 Moderate | 0.010 | 0.910 | 0.330 | 0.370 | 0.240 | 0.440 | 0.580 | -0.220 | 0.060 | 0.650 | 0.045 | 0.740 | 0.490 | 0.270 | 0.010 | 0.740 | 0.400 | -0.320 | |
高 High | 0.180 | -0.490 | 0.200 | 0.470 | 0.070 | -0.630 | 0.006 | 0.830 | 0.420 | -0.310 | 0.005 | 0.840 | 0.070 | -0.620 | 0.010 | 0.940 | 0.010 | -0.790 |
Table 3 Pearson correlation analysis between N:P addition and leaf N, P contents and nutrient resorption efficiency of Achnatherum splendens at different nutrient addition level
养分添加水平 Nutritional addition level | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
低 Low | 0.660 | -0.170 | 0.390 | 0.330 | 0.020 | 0.740 | 0.560 | -0.230 | 0.410 | 0.320 | 0.060 | 0.290 | 0.260 | -0.420 | 0.000 | 0.940 | 0.030 | -0.720 | |
中 Moderate | 0.010 | 0.910 | 0.330 | 0.370 | 0.240 | 0.440 | 0.580 | -0.220 | 0.060 | 0.650 | 0.045 | 0.740 | 0.490 | 0.270 | 0.010 | 0.740 | 0.400 | -0.320 | |
高 High | 0.180 | -0.490 | 0.200 | 0.470 | 0.070 | -0.630 | 0.006 | 0.830 | 0.420 | -0.310 | 0.005 | 0.840 | 0.070 | -0.620 | 0.010 | 0.940 | 0.010 | -0.790 |
Fig. 3 Nutrient resorption efficiency of Achnatherum splendens leaves under different treatments (mean ± SD). L, M and H represent low, moderate and high nutrient addition level, respectively. Different uppercase and lowercase letters indicate the significant difference between the treatments under the condition of the same nutrient addition level and the N:P, respectively (p < 0.05).
叶片性状 Leaf trait | 叶片类型 Leaf type | 养分添加水平 Nutrient addition level | 氮磷比 N:P | 交互作用 Interaction | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | Sig. (N) | F | p | Sig. (R) | F | p | ||
氮含量 N content | 成熟叶片 GL | 1.260 | 0.310 | a, a, a | 7.940 | 0.003 | b, a, b | 10.220 | 0.000 |
衰老叶片 SL | 18.820 | 0.000 | a, a, b | 1.300 | 0.300 | a, a, a | 1.190 | 0.350 | |
磷含量 P content | 成熟叶片 GL | 1.900 | 0.050 | a, a, a | 1.990 | 0.580 | a, a, a | 2.500 | 0.090 |
衰老叶片 SL | 0.530 | 0.050 | a, a, ab | 3.000 | 0.110 | ab, a, a | 0.530 | 0.005 | |
氮磷比 N:P | 成熟叶片 GL | 0.090 | 0.620 | ab, ab, a | 9.000 | 0.002 | b, a, b | 1.630 | 0.050 |
衰老叶片 SL | 6.110 | 0.004 | a, b, b | 4.560 | 0.040 | a, a, b | 1.830 | 0.150 | |
氮回收效率 N resorption efficiency (NRE) | 33.880 | 0.000 | b, b, a | 5.670 | 0.012 | a, ab, b | 9.500 | 0.000 | |
磷回收效率 P resorption efficiency (PRE) | 0.630 | 0.540 | a, a, a | 6.440 | 0.008 | a, b, b | 0.660 | 0.630 | |
NRE:PRE | 3.630 | 0.050 | b, ab, a | 13.730 | 0.000 | b, a, a | 1.850 | 0.160 |
Table 4 Results of two-way ANOVAs on the effects of nutrient addition, N:P, and their interactions on leaf N and P contents, N:P and N, P resorption efficiency
叶片性状 Leaf trait | 叶片类型 Leaf type | 养分添加水平 Nutrient addition level | 氮磷比 N:P | 交互作用 Interaction | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | Sig. (N) | F | p | Sig. (R) | F | p | ||
氮含量 N content | 成熟叶片 GL | 1.260 | 0.310 | a, a, a | 7.940 | 0.003 | b, a, b | 10.220 | 0.000 |
衰老叶片 SL | 18.820 | 0.000 | a, a, b | 1.300 | 0.300 | a, a, a | 1.190 | 0.350 | |
磷含量 P content | 成熟叶片 GL | 1.900 | 0.050 | a, a, a | 1.990 | 0.580 | a, a, a | 2.500 | 0.090 |
衰老叶片 SL | 0.530 | 0.050 | a, a, ab | 3.000 | 0.110 | ab, a, a | 0.530 | 0.005 | |
氮磷比 N:P | 成熟叶片 GL | 0.090 | 0.620 | ab, ab, a | 9.000 | 0.002 | b, a, b | 1.630 | 0.050 |
衰老叶片 SL | 6.110 | 0.004 | a, b, b | 4.560 | 0.040 | a, a, b | 1.830 | 0.150 | |
氮回收效率 N resorption efficiency (NRE) | 33.880 | 0.000 | b, b, a | 5.670 | 0.012 | a, ab, b | 9.500 | 0.000 | |
磷回收效率 P resorption efficiency (PRE) | 0.630 | 0.540 | a, a, a | 6.440 | 0.008 | a, b, b | 0.660 | 0.630 | |
NRE:PRE | 3.630 | 0.050 | b, ab, a | 13.730 | 0.000 | b, a, a | 1.850 | 0.160 |
[1] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608. |
[2] | Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960. |
[3] | Amat B (2011). The biology of deserts. by D. Ward. Journal of Vegetation Science, 22, 1149-1150. |
[4] | Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10, 187-200. |
[5] | Bremner JM, Breitenbeck G (1983). A simple method for determination of ammonium in semimicro-Kjeldahl analysis of soils and plant materials using a block digester. Communications in Soil Science and Plant Analysis, 14, 905-913. |
[6] | Drenovsky RE, Koehler CE, Skelly K, Richards JH (2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50. |
[7] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2008). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[8] | Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892. |
[9] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[10] | Güsewell S (2005). Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology, 19, 344-354. |
[11] | Güsewell S, Bollens U (2003). Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Applied Ecology, 4, 453-466. |
[12] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland. Chinese Journal of Plant Ecology, 40, 788-797. |
[ 韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] | |
[13] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] | |
[14] | Hejcman M, Klaudisova M, Schellberg J, Honsova D (2007). The Rengen grassland experiment: plant species composition after 64 years of fertilizer application. Agriculture, Ecosystems & Environment, 122, 259-266. |
[15] | James JJ, Tiller RL, Richards JH (2005). Multiple resources limit plant growth and function in a saline-alkaline desert community. Journal of Ecology, 93, 113-126. |
[16] | Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
[17] | Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007). Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology, 21, 1034-1043. |
[18] | Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012). Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia, 169, 177-185. |
[19] | Lavorel S, Garnier E (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556. |
[20] | Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH (2010). Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litter fall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 40, 2256-2261. |
[21] | Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943. |
[22] | Liu P, Huang JH, Sun OJ, Han XG (2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162, 771-780. |
[23] | Liu QY, Jiang M, Wang GD, Lu XG, Wang M, Lou YJ, Yuan YX (2013). Effect of exogenous phosphorus inputs on seed germination of soil seed bank in marshes in Xingkai Lake. Wetland Science, 11, 41-47. |
[24] | Lü XT, Han XG (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327, 481-491. |
[25] | Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013). Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 19, 2775-2784. |
[26] | Luo Y, Zhao X, Zuo X, Zhang J, Liu R, Wang S (2010). Leaf nitrogen resorption pattern along habitats of semi-arid sandy land with different nitrogen status. Polish Journal of Ecology, 58, 707-716. |
[27] | Mao R, Zhang XH, Song CC (2014). Effects of nitrogen addition on plant functional traits in freshwater wetland of Sanjiang Plain, Northeast China. Chinese Geographical Science, 24, 674-681. |
[28] | May JD, Killingbeck KT (1992). Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 73, 1868-1878. |
[29] | Menge DNL, Field CB (2007). Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 13, 2582-2591. |
[30] | Norris MD, Reich PB (2009). Modest enhancement of nitrogen conservation via retrainslocation in response to gradients in N supply and leaf N status. Plant and Soil, 316, 193-204. |
[31] | Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18, 3-6. |
[32] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[33] | Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196, 173-180. |
[34] | Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R (2007). Effects of fertilisation and irrigation on “foliar afterlife” in alpine tundra. Journal of Vegetation Science, 18, 755-766. |
[35] | Stackpoole SM, Workmaster BAA, Jackson RD, Kosola KR (2008). Nitrogen conservation strategies of cranberry plants and ericoid mycorrhizal fungi in an agroecosystem. Soil Biology & Biochemistry, 40, 2736-2742. |
[36] | Tripler C, Canham C, Inouye R, Schurr J (2002). Soil nitrogen availability, plant luxury consumption, and herbivory by white-tailed deer. Oecologia, 133, 517-524. |
[37] | van Heerwaarden LM, Toet S, Aerts R (2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 91, 1060-1070. |
[38] | Venterink HO, Güsewell S (2010). Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Functional Ecology, 24, 877-886. |
[39] | Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220. |
[40] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[41] | Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ (2015). C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLOS ONE, 10, e0119935. DOI: 10.1371/journal.pone.0119935. |
[42] | Yan T, Zhu JJ, Yang K (2018). Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis. Journal of Forestry Research, 29, 905-913. |
[43] | Yan ZB, Kim N, Han WX, Guo YL, Han TS, Du EZ, Fang JY (2015). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388, 147-155. |
[44] | Yang H, Luo YC (2015). Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought. Chinese Journal of Plant Ecology, 39, 32-42. |
[ 杨浩, 罗亚晨 (2015). 糙隐子草功能性状对氮添加和干旱的响应. 植物生态学报, 39, 32-42.] | |
[45] | Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 18, 11-18. |
[46] |
Yuan ZY, Chen HYH (2015). Negative effects of fertilization on plant nutrient resorption. Ecology, 96, 373-380.
DOI URL |
[47] | Yuan ZY, Li LH, Han XG, Huang JH, Wan SQ (2005). Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in Northern China. Plant and Soil, 278, 183-193. |
[48] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. |
[ 曾德慧, 陈广生(2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn