Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (4): 619-624.DOI: 10.17521/cjpe.2007.0079
• Articles • Previous Articles Next Articles
ZHANG Li-Li1,2, DONG Ming1, LI Ren-Qiang1,2, WANG Yan-Hong1,2, CUI Qing-Guo1,2, HE Wei-Ming1,*()
Received:
2006-06-27
Accepted:
2007-01-05
Online:
2007-06-27
Published:
2007-07-30
Contact:
HE Wei-Ming
ZHANG Li-Li, DONG Ming, LI Ren-Qiang, WANG Yan-Hong, CUI Qing-Guo, HE Wei-Ming. SOIL-NUTRIENT PATCH CONTRAST MODIFIES INTENSITY AND DIRECTION OF CLONAL INTEGRATION IN GLECHOMA LONGITUBA[J]. Chin J Plant Ecol, 2007, 31(4): 619-624.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0079
Fig.1 Layout of the experiment (The four different patterns stand for four different nutrient patches) C: Control LC: Low contrast MC: Medium contrast HC: high contrast
养分总量 Total amount of nutrients (g·m-3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control (C) | 低对比强度 Low contrast (LC) | 中对比强度 Medium contrast (MC) | 高对比强度 High contrast (HC) | ||||||||
O | T | O | T | O | T | O | T | ||||
N | 1 125 | 1 125 | 1 125 | 1 000 | 1 125 | 875 | 1 125 | 750 | |||
P | 1 125 | 1 125 | 1 125 | 1 000 | 1 125 | 875 | 1 125 | 750 | |||
K | 1 125 | 1 125 | 1 125 | 1 000 | 1 125 | 875 | 1 125 | 750 |
Table 1 Total amount of nutrients used in the four contrasting nutrient patches
养分总量 Total amount of nutrients (g·m-3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control (C) | 低对比强度 Low contrast (LC) | 中对比强度 Medium contrast (MC) | 高对比强度 High contrast (HC) | ||||||||
O | T | O | T | O | T | O | T | ||||
N | 1 125 | 1 125 | 1 125 | 1 000 | 1 125 | 875 | 1 125 | 750 | |||
P | 1 125 | 1 125 | 1 125 | 1 000 | 1 125 | 875 | 1 125 | 750 | |||
K | 1 125 | 1 125 | 1 125 | 1 000 | 1 125 | 875 | 1 125 | 750 |
Fig.2 Clonal integration (I) in physiological function along a nutrient-patch contrast gradient Pn:叶片净光合速率 Net photosynthetic rate Gs:气孔导度 Stomatal conductance Ci/Ca:胞内外CO2浓度比 Ratio of substomatal CO2 to atmospheric CO2 E:蒸腾速率 Transpiration rate F:最小荧光Minimal fluorescence in the light conditions Fm:最大荧光 Maximal fluorescence in the light conditions Yield:最大光化学量子产量 Fluorescence efficiency of PSⅡ in the light conditions qP:光化学淬灭系数 Photochemical quenching in the light conditions NPQ:非光化学淬灭系数 Nonphotochemical quenching in the light conditions F':最小荧光 Minimal fluorescence in the dark conditions Fm':最大荧光 Maximal fluorescence in the dark conditions Yield':最大光化学量子产量 Fluorescence efficiency of PSⅡin the dark conditions C、LC、MC、HC:同图1 See Fig.1
Fig.3 Clonal integration (I) in biomass growth and allocation (A) and specific biomass allocation (B) along a nutrient-patch contrast gradient F:克隆片段生物量 Fragment biomass LWR:叶片生物量比 Lamina weight ratio PWR:叶柄生物量比 Petiole weight ratio SWR:匍匐茎生物量比 Stolon weight ratio RWR:根生物量比 Root weight ratio R/S:根冠比 Root/shoot ratio SLA:比叶面积 Specific lamina area SPL:比叶柄长 Specific petiole length SSL:比茎长 Specific stolon length SRL:比根长 Specific root length C、LC、MC、HC:同图1 See Fig.1
[1] |
Alpert P (1999). Effects of clonal integration on plant plasticity in Fragaria chiloensis. Plant Ecology, 141, 99-106.
DOI URL |
[2] |
Caraco T, Kelly CK (1991). On the adaptive value of physiological integration in clonal plants. Ecology, 72, 81-93.
DOI URL |
[3] |
Dong M (1995). Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia, 101, 282-288.
DOI URL PMID |
[4] | Dong M (董鸣) (1996). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica (植物学报), 88, 828-835. (in Chinese with English abstract) |
[5] | Eriksson O, Jerling L 1990. Hierarchical selection and risk spreading in clonal plants. In: van Groenendael J, de Kroon H eds. Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, the Hague, the Netherlands, 79-94. |
[6] |
Evans JP (1992). The effect of local resource availability and clonal integration on ramet functional morphology in Hydrocotyle bonariensis. Oecologia, 86, 268-275.
DOI URL PMID |
[7] |
Farley RA, Fitter AH (1999). The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. Journal of Ecology, 87, 849-859.
DOI URL |
[8] | He WM (何维明), Dong M (董鸣) (2002). Ramets and genets in the tillering clonal herb Panicum miliaceum in hierarchical response to heterogeneous nutrient environments. Acta Ecologica Sinica (生态学报), 20, 169-175. (in Chinese with English abstract) |
[9] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[10] | Hutchings MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[11] |
Hutchings MJ, Wijesinghe DK (1997). Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology and Evolution, 12, 390-394.
DOI URL PMID |
[12] |
Jónsdóttir IS, Callaghan TV (1990). Intraclonal traslocation of ammonium and nitrate in Carex bigelowii using 15N and nitrate reductase assays. New Phytologist, 114, 419-426.
DOI URL |
[13] | Jónsdóttir IS, Watson MA 1997. Extensive physiological integration: an adaptive trait in resource-poor environments? In: de Kroon H, van Groenendael J eds. The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, the Netherlands, 109-136. |
[14] | Pitelka LF, Ashmun JW 1985. Physiology and integration of ramets in clonal plants. In: Jackson JBC, Buss LW, Cook RE eds. Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, London, 1-55. |
[15] | Shan BQ (单保庆), Du GZ (杜国祯), Liu ZH (刘振恒) (2000). Clonal growth of Ligularia virgaurea: morphological responses to nutritional variation. Acta Phytoecologica Sinica (植物生态学报), 24, 46-51. (in Chinese with English abstract) |
[16] |
Stuefer JF, During HJ, de Kroon H (1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. Journal of Ecology, 82, 511-518.
DOI URL |
[17] |
Stuefer JF, Hutchings MJ (1994). Environmental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia, 100, 302-308.
DOI URL PMID |
[18] |
Stuefer JF (1996). Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity. Vegetatio, 127, 55-70.
DOI URL |
[19] | Svesson BM, Callaghan TV (1988). Small-scale vegetation pattern related to the growth of Lycopodium annotinum and variations in its micro-environment. Vegetatio, 76, 167-177. |
[20] |
Turkington R, Hamilton RS, Gliddon C (1991). Within population variation in localized and integrated responses of Trifolicum repens to biologically patchy environments. Oecologia, 86, 183-192.
DOI URL PMID |
[21] |
Wijesinghe DK, Handel SN (1994). Advantages of clonal growth in heterogeneous habitats: an experiment with Potentilla simplex. Journal of Ecology, 82, 495-502.
DOI URL |
[22] | Zhang CY (张称意), Yang C (杨持), Dong M (董鸣) (2001). The clonal integraion of photosynthate in the rhizomatous half-shrub Hedysarum leave. Acta Ecologica Sinica (生态学报), 21, 1986-1993. (in Chinese with English abstract) |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 5348
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn