Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (7): 785-796.DOI: 10.17521/cjpe.2021.0108
• Research Articles • Previous Articles Next Articles
SU Qi-Tao1, DU Zhi-Xuan1,2, ZHOU Bing1, LIAO Yong-Hui1, WANG Cheng-Cheng1, XIAO Yi-An1,*()
Received:
2021-03-25
Accepted:
2021-06-24
Online:
2022-07-20
Published:
2022-06-09
Contact:
XIAO Yi-An
Supported by:
SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China[J]. Chin J Plant Ecol, 2022, 46(7): 785-796.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0108
变量 Variable | 描述 Description | 单位 Unit |
---|---|---|
Bio1 | 年平均气温 Mean annual air temperature | ℃ × 10 |
Bio2 | 平均气温日较差 Mean diurnal range (mean of monthly (maximum temperature - minimum temperature)) | ℃ × 10 |
Bio3 | 等温性 Isothermality | - |
Bio4 | 气温季节性变化标准差 Variation of temperature seasonlity | - |
Bio5 | 最暖月最高气温 Maximum temperature of warmest month | ℃ × 10 |
Bio6 | 最冷月最低气温 Minimum temperature of coldest month | ℃ × 10 |
Bio7 | 温度年较差 Temperature annual range | ℃ × 10 |
Bio8 | 最湿季度平均气温 Mean temperature of wettest quarter | ℃ × 10 |
Bio9 | 最干季度平均气温 Mean temperature of driest quarter | ℃ × 10 |
Bio10 | 最暖季度平均气温 Mean temperature of warmest quarter | ℃ × 10 |
Bio11 | 最冷季度平均气温 Mean temperature of coldest quarter | ℃ × 10 |
Bio12 | 年降水量 Mean annual precipitation | mm |
Bio13 | 最湿月降水量 Precipitation of wettest month | mm |
Bio14 | 最干月降水量 Precipitation of the driest month | mm |
Bio15 | 降水量季节性变化标准差 Variation of precipitation seasonlity | - |
Bio16 | 最湿季度降水量 Precipitation of wettest quarter | mm |
Bio17 | 最干季度降水量 Precipitation of driest quarter | mm |
Bio18 | 最暖季度降水量 Precipitation of warmest quarter | mm |
Bio19 | 最冷季度降水量 Precipitation of coldest quarter | mm |
Table 1 Descriptions of the 19 environmental factors used for the calibration of species distribution models
变量 Variable | 描述 Description | 单位 Unit |
---|---|---|
Bio1 | 年平均气温 Mean annual air temperature | ℃ × 10 |
Bio2 | 平均气温日较差 Mean diurnal range (mean of monthly (maximum temperature - minimum temperature)) | ℃ × 10 |
Bio3 | 等温性 Isothermality | - |
Bio4 | 气温季节性变化标准差 Variation of temperature seasonlity | - |
Bio5 | 最暖月最高气温 Maximum temperature of warmest month | ℃ × 10 |
Bio6 | 最冷月最低气温 Minimum temperature of coldest month | ℃ × 10 |
Bio7 | 温度年较差 Temperature annual range | ℃ × 10 |
Bio8 | 最湿季度平均气温 Mean temperature of wettest quarter | ℃ × 10 |
Bio9 | 最干季度平均气温 Mean temperature of driest quarter | ℃ × 10 |
Bio10 | 最暖季度平均气温 Mean temperature of warmest quarter | ℃ × 10 |
Bio11 | 最冷季度平均气温 Mean temperature of coldest quarter | ℃ × 10 |
Bio12 | 年降水量 Mean annual precipitation | mm |
Bio13 | 最湿月降水量 Precipitation of wettest month | mm |
Bio14 | 最干月降水量 Precipitation of the driest month | mm |
Bio15 | 降水量季节性变化标准差 Variation of precipitation seasonlity | - |
Bio16 | 最湿季度降水量 Precipitation of wettest quarter | mm |
Bio17 | 最干季度降水量 Precipitation of driest quarter | mm |
Bio18 | 最暖季度降水量 Precipitation of warmest quarter | mm |
Bio19 | 最冷季度降水量 Precipitation of coldest quarter | mm |
Fig. 2 Correlation coefficients between the environmental factors across the distribution ranges of Impatiens davidii (A) and Bombus trifasciatus (B). See Table 1 for Bio1-Bio19.
Fig. 3 Receiver operating characteristic curve (ROC) of the maxinmum enrropy (MaxEnt) models. A, Impatiens davidii. B, Bombus trifasciatus. AUC, area under curve.
环境变量 Variable | 描述 Description | 贡献率 Percent contribution (%) |
---|---|---|
Bio18 | 最暖季度降水量 Precipitation of warmest quarter | 51.5 |
Bio4 | 气温季节性变化标准差 Variation of temperature seasonlity | 23.4 |
Bio15 | 降水量季节性变化标准差 Variation of precipitation seasonlity | 8.0 |
Bio13 | 最湿月降水量 Precipitation of wettest month | 6.4 |
Bio6 | 最冷月最低气温 Minimum temperature of coldest month | 6.1 |
Bio14 | 最干月降水量 Precipitation of driest month | 3.4 |
Table 2 Major environmental variables that determine the distribution of Impatiens davidii
环境变量 Variable | 描述 Description | 贡献率 Percent contribution (%) |
---|---|---|
Bio18 | 最暖季度降水量 Precipitation of warmest quarter | 51.5 |
Bio4 | 气温季节性变化标准差 Variation of temperature seasonlity | 23.4 |
Bio15 | 降水量季节性变化标准差 Variation of precipitation seasonlity | 8.0 |
Bio13 | 最湿月降水量 Precipitation of wettest month | 6.4 |
Bio6 | 最冷月最低气温 Minimum temperature of coldest month | 6.1 |
Bio14 | 最干月降水量 Precipitation of driest month | 3.4 |
Fig. 4 Effects of environmental variables on the gain of distribution of Impatiens davidii using Jackknife test. See Table 1 for description of environmental factors.
物种 Species | 当前 Current | RCP2.6 | RCP4.5 | RCP8.5 | ||||
---|---|---|---|---|---|---|---|---|
2050s | 2070s | 2050s | 2070s | 2050s | 2070s | |||
非适生区 Unsuitable area | A | 731.36 | 716.28 | 723.51 | 713.52 | 711.12 | 704.28 | 705.45 |
B | 717.03 | 712.54 | 710.85 | 710.43 | 711.38 | 710.74 | 701.52 | |
低度适生区 Marginal area | A | 82.56 | 95.42 | 89.16 | 92.61 | 97.31 | 100.85 | 104.75 |
B | 69.67 | 80.78 | 82.67 | 88.63 | 83.26 | 95.45 | 98.96 | |
中度适生区 Suitable area | A | 68.67 | 67.78 | 62.71 | 67.00 | 66.81 | 71.73 | 75.91 |
B | 87.82 | 93.06 | 89.99 | 88.18 | 89.91 | 91.00 | 102.05 | |
高度适生区 Optimal area | A | 81.25 | 84.37 | 88.46 | 90.72 | 88.60 | 86.99 | 77.75 |
B | 89.33 | 77.47 | 80.33 | 76.60 | 79.30 | 66.67 | 61.32 |
Table 3 Potential distribution areas of Impatiens davidii (A) and Bombus trifasciatus (B) under current climate and future climate scenarios (×104 km2)
物种 Species | 当前 Current | RCP2.6 | RCP4.5 | RCP8.5 | ||||
---|---|---|---|---|---|---|---|---|
2050s | 2070s | 2050s | 2070s | 2050s | 2070s | |||
非适生区 Unsuitable area | A | 731.36 | 716.28 | 723.51 | 713.52 | 711.12 | 704.28 | 705.45 |
B | 717.03 | 712.54 | 710.85 | 710.43 | 711.38 | 710.74 | 701.52 | |
低度适生区 Marginal area | A | 82.56 | 95.42 | 89.16 | 92.61 | 97.31 | 100.85 | 104.75 |
B | 69.67 | 80.78 | 82.67 | 88.63 | 83.26 | 95.45 | 98.96 | |
中度适生区 Suitable area | A | 68.67 | 67.78 | 62.71 | 67.00 | 66.81 | 71.73 | 75.91 |
B | 87.82 | 93.06 | 89.99 | 88.18 | 89.91 | 91.00 | 102.05 | |
高度适生区 Optimal area | A | 81.25 | 84.37 | 88.46 | 90.72 | 88.60 | 86.99 | 77.75 |
B | 89.33 | 77.47 | 80.33 | 76.60 | 79.30 | 66.67 | 61.32 |
Fig. 7 Potential suitable area of Impatiens davidii under future climate scenarios in China. RCP2.6, RCP4.5, RCP8.5 are different climate representative concentration pathway scenarios.
生态位重合度 Niche overlap | 地理分布重合度 Range overlap | 生态位宽度 Niche breadth | |
---|---|---|---|
D | I | ||
0.460 113 | 0.746 422 | 0.917 597 | 0.806 54/0.748 81 |
Table 4 Niche overlap, niche breadth and range overlap between Impatiens davidii and Bombus trifasciatus
生态位重合度 Niche overlap | 地理分布重合度 Range overlap | 生态位宽度 Niche breadth | |
---|---|---|---|
D | I | ||
0.460 113 | 0.746 422 | 0.917 597 | 0.806 54/0.748 81 |
气候情景 Climate scenario | 年份 Year | 牯岭凤仙花适生区 Suitable area of Impatiens davidii | 三条熊蜂适生区 Suitable area of Bombus trifasciatus | 共同分布区 Co-distribution areas | 共同分布区占牯岭凤仙花 适生区比例 Proportion of co-distribution areas among suitable areas of I. davidii (%) |
---|---|---|---|---|---|
当前 Current | - | 232.485 8 | 246.821 3 | 230.359 8 | 99.09 |
RCP2.6 | 2050s | 247.570 6 | 251.302 9 | 234.374 9 | 94.67 |
2070s | 240.335 5 | 253.000 9 | 234.780 5 | 97.69 | |
RCP4.5 | 2050s | 250.328 6 | 253.418 4 | 234.172 1 | 93.55 |
2070s | 252.722 5 | 252.472 0 | 232.631 0 | 92.05 | |
RCP8.5 | 2050s | 259.570 2 | 253.112 2 | 234.699 3 | 90.42 |
2070s | 258.401 0 | 262.325 9 | 232.793 2 | 90.09 |
Table 5 Change in the predicted habitats overlap between Impatiens davidii and Bombus trifasciatus under different climate scenarios (×104 km2)
气候情景 Climate scenario | 年份 Year | 牯岭凤仙花适生区 Suitable area of Impatiens davidii | 三条熊蜂适生区 Suitable area of Bombus trifasciatus | 共同分布区 Co-distribution areas | 共同分布区占牯岭凤仙花 适生区比例 Proportion of co-distribution areas among suitable areas of I. davidii (%) |
---|---|---|---|---|---|
当前 Current | - | 232.485 8 | 246.821 3 | 230.359 8 | 99.09 |
RCP2.6 | 2050s | 247.570 6 | 251.302 9 | 234.374 9 | 94.67 |
2070s | 240.335 5 | 253.000 9 | 234.780 5 | 97.69 | |
RCP4.5 | 2050s | 250.328 6 | 253.418 4 | 234.172 1 | 93.55 |
2070s | 252.722 5 | 252.472 0 | 232.631 0 | 92.05 | |
RCP8.5 | 2050s | 259.570 2 | 253.112 2 | 234.699 3 | 90.42 |
2070s | 258.401 0 | 262.325 9 | 232.793 2 | 90.09 |
[1] | An JD (2004). Studies on Breeding Technology of Bumble Bee in Captivity. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing. |
[安建东 (2004). 熊蜂(Bombus lucorum)的人工繁育技术研究. 硕士学位论文, 中国农业科学院, 北京.] | |
[2] | Bond WJ (1994). Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 344, 83-90. |
[3] | Chao BX, Hu WJ, Chen B, Zhang D, Chen GC, Yu WW, Ma ZY, Lei GC, Wang YY (2020). Potential suitable habitat of mangroves and conservation gap analysis in Guangdong Province with MaxEnt modeling. Chinese Journal of Ecology, 39, 3785-3794. |
[晁碧霄, 胡文佳, 陈彬, 张典, 陈光程, 俞炜炜, 马志远, 雷光春, 王玉玉 (2020). 基于MaxEnt模型的广东省红树林潜在适生区和保护空缺分析. 生态学杂志, 39, 3785-3794.] | |
[4] | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
[5] |
Cui SP, Luo X, Li CW, Hu HJ, Jiang ZG (2018). Predicting the potential distribution of whitelipped deer using the MaxEnt model. Biodiversity Science, 26, 171-176.
DOI URL |
[崔绍朋, 罗晓, 李春旺, 胡慧建, 蒋志刚 (2018). 基于MaxEnt模型预测白唇鹿的潜在分布区. 生物多样性, 26, 171-176.]
DOI |
|
[6] | Duan YZ, Wang C, Wang HT, Du ZY, He YM, Chai GQ (2020). Predicting the potential distribution of Ammopiptanthus species in China under different climates using ecological niche models. Acta Ecologica Sinica, 40, 7668-7680. |
[段义忠, 王驰, 王海涛, 杜忠毓, 贺一鸣, 柴乖强 (2020). 不同气候条件下沙冬青属植物在我国的潜在分布--基于生态位模型预测. 生态学报, 40, 7668-7680.] | |
[7] | Feng B, Wu XP, Liu LY (2012). Repair river large Wei Mountain and Lushan Ku Ridge wild Impatiens biology of thinking. Jiangxi Science, 30, 47-49. |
[冯彬, 巫县平, 刘良源 (2012). 修河源大沩山与庐山牯岭野凤仙花生物学习性研究. 江西科学, 30, 47-49.] | |
[8] |
Gao M, Hu RY, Chen XX, Li WC, Ding BY (2011). Effects of disturbance, topography, and soil conditions on the distribution of invasive plants in Wenzhou. Biodiversity Science, 19, 424-431.
DOI URL |
[高末, 胡仁勇, 陈贤兴, 李伟成, 丁炳扬 (2011). 干扰、地形和土壤对温州入侵植物分布的影响. 生物多样性, 19, 424-431.]
DOI |
|
[9] |
Graham MH (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815.
DOI URL |
[10] |
He X, Burgess KS, Gao L, Li D (2019). Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Diversity, 41, 26-32.
DOI URL |
[11] | Hou J, Fan YP (2016). Cymbidium sinense between the ultrastructure and correspondence insect pollination. Northern Horticulture, 24, 83-87. |
[侯佳, 范燕萍 (2016). 墨兰花部超微结构与昆虫传粉行为的对应性. 北方园艺, 24, 83-87.] | |
[12] |
Huang YB, Wei YK, Wang Q, Xiao YE, Ye XY (2015). Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever like stamens. Chinese Journal of Plant Ecology, 39, 753-761.
DOI URL |
[黄艳波, 魏宇昆, 王琦, 肖月娥, 叶喜阳 (2015). 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制. 植物生态学报, 39, 753-761.]
DOI |
|
[13] |
Jiao SW, Qing Z, Sun GQ, Lei GC (2016). Improving conservation of cranes by modeling potential wintering distributions in China. Journal of Resources and Ecology, 7, 44-50.
DOI URL |
[14] | Jing GH, Cheng JM, Su JS, Wei L, Shi XX, Jin JW (2015). Response of dominant population niche breadths and niche overlaps to various disturbance factors in typical steppe fenced grassland of Chinaʼs Loess Plateau region. Acta Prataculturae Sinica, 24, 43-52. |
[井光花, 程积民, 苏纪帅, 魏琳, 史晓晓, 金晶炜 (2015). 黄土区长期封育草地优势物种生态位宽度与生态位重叠对不同干扰的响应特征. 草业学报, 24, 43-52.] | |
[15] |
Kumar P (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21, 1251-1266.
DOI URL |
[16] | Lei JC, Xu HG (2010). MaxEnt-based prediction of potential distribution of Solidago canadensis in China. Journal of Ecology and Rural Environment, 26, 137-141. |
[雷军成, 徐海根 (2010). 基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测. 生态与农村环境学报, 26, 137-141.] | |
[17] | Li XM, Yu M, Li J (2020). Research progress on plant invasion mechanism. Bulletin of Biology, 55, 5-9. |
[李小蒙, 于明, 李洁 (2020). 植物入侵机制研究进展. 生物学通报, 55, 5-9.] | |
[18] | Li Y, Cao W, He XY, Chen W, Xu S (2019). Prediction of suitable habitat for lycophytes and ferns in northeast China: a case study on Athyrium brevifrons. Chinese Geographical Science, 29, 1011-1023. |
[19] | Liu C, Huo HL, Tian LM, Dong XG, Xu JY, Qi D, Zhang Y, Cao YF (2020). Prediction of potential geographical distribution patterns of Pyrus xerophila under different climate scenarios. Chinese Journal of Applied Ecology, 31, 4073-4079. |
[刘超, 霍宏亮, 田路明, 董星光, 徐家玉, 齐丹, 张莹, 曹玉芬 (2020). 不同气候情景下木梨潜在地理分布格局变化的预测. 应用生态学报, 31, 4073-4079.]
DOI |
|
[20] |
Liu HY, Yin Y (2013). Response of forest distribution to past climate change: an insight into future predictions. Chinese Science Bulletin, 58, 4426-4436.
DOI URL |
[21] | Liu LY, Liu X, Wu J (2012). The trace of Impatiens davidii. China Nature, (2), 20-21. |
[刘良源, 刘逊, 吴杰 (2012). 牯岭凤仙花探踪. 大自然, (2), 20-21.] | |
[22] | Liu NN, Xiao HW, Chen XH, Chi YY, Luo HL, Xiong DJ, Yang BY (2020). Nectar secretion characteristics and their effects on insect pollination of Goodyera foliosa, a nectar rewarding orchid. Journal of Tropical and Subtropical Botany, 28, 265-270. |
[刘南南, 肖汉文, 陈兴惠, 迟韵阳, 罗火林, 熊冬金, 杨柏云 (2020). 多叶斑叶兰花蜜特征和分泌规律及其对昆虫访花的影响. 热带亚热带植物学报, 28, 265-270.] | |
[23] | Lu K, He YM, Mao W, Du ZY, Wang LJ, Liu GM, Feng WJ, Duan YZ (2020). Potential geographical distribution and changes of Artemisia ordosica in China under future climate change. Chinese Journal of Applied Ecology, 31, 3758-3766. |
[鲁客, 贺一鸣, 毛伟, 杜忠毓, 王莉君, 刘国民, 封文佳, 段义忠 (2020). 未来气候变化下黑沙蒿在中国的潜在地理分布及变迁. 应用生态学报, 31, 3758-3766.]
DOI |
|
[24] | Ma XL, He WY, You MS (2017). Interactions between insect herbivores feeding on cruciferous plants and host plant glucosinolates. Acta Entomologica Sinica, 60, 1093-1104. |
[马小丽, 何玮毅, 尤民生 (2017). 取食十字花科植物的植食性昆虫与寄主植物硫苷的互作. 昆虫学报, 60, 1093-1104.] | |
[25] | Ma YH (2013). Applying MaxEnt and ArcGis to Predict Mosses Geographic Distribution Range-A Case Study of Huaping Nature Reserve, Guangxi. Master degree dissertation, Shanghai Normal University, Shanghai. |
[麻亚鸿 (2013). 基于最大熵模型(MaxEnt)和地理信息系统(ArcGis)预测藓类植物的地理分布范围--以广西花坪自然保护区为例. 硕士学位论文, 上海师范大学, 上海.] | |
[26] |
Memmott J, Craze PG, Waser NM, Price MV (2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10, 710-717.
PMID |
[27] | Meng Y, Ma JM, Wang YQ, Mo YH (2020). Prediction of distribution area of Loropetalum chinense based on Maxent model. Acta Ecologica Sinica, 40, 8287-8296. |
[孟影, 马姜明, 王永琪, 莫燕华 (2020). 基于Maxent模型的檵木分布格局模拟. 生态学报, 40, 8287-8296.] | |
[28] | Najberek K, Olejniczak P, Berent K, Gasienica-Staszeczek M, Solarz W (2020). The ability of seeds to float with water currents contributes to the invasion success of Impatiens balfourii and I. glandulifera. Journal of Plant Research, 133, 649-664. |
[29] |
OʼConnor B, Bojinski S, Röösli C, Schaepman ME (2019). Monitoring global changes in biodiversity and climate is more important than ever as ecological crisis intensifies. Ecological Informatics, 55, 101033. DOI: 10.1016/j.ecoinf.2019.101033.
DOI URL |
[30] |
Peterson AT (2011). Ecological niche conservatism: a time- structured review of evidence. Journal of Biogeography, 38, 817-827.
DOI URL |
[31] |
Phillips SJ, Dudík M (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
DOI URL |
[32] |
Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FPD, Taylor PJ, Schoeman MC, Price BW, Villet MH, Eick G, Salamin N, Guisan A (2014). Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 20, 1538-1549.
DOI URL |
[33] | Shen Y, Yu J, Guo SL (2015). Macromitrium and Orthotrichum distribution patterns under different climate warming scenarios in China. Acta Ecologica Sinica, 35, 6449-6459. |
[沈阳, 于晶, 郭水良 (2015). 不同气候变化情境下中国木灵藓属和蓑藓属植物的潜在分布格局. 生态学报, 35, 6449-6459.] | |
[34] | Shen YP, Wang GY (2013). Key findings and assessment results of IPCC WGI Fifth Assessment Report. Journal of Glaciology and Geocryology, 35, 1068-1076. |
[沈永平, 王国亚 (2013). IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 35, 1068-1076.] | |
[35] |
Silvertown JW (1983). The distribution of plants in limestone pavement: tests of species interaction and niche separation against null hypotheses. Journal of Ecology, 71, 819-828.
DOI URL |
[36] | Song WJ (2016). Response of Vegetation Distribution to Climate Change in Central and Eastern China in Recent 50 Years. Master degree dissertation, University of the Chinese Academy of Sciences, Beijing. |
[宋文静 (2016). 近50年中国中东部地区植被分布对气候变化的响应. 硕士学位论文, 中国科学院大学, 北京.] | |
[37] | Su QT (2019). The Geographical Variation of Pollination Networks of Invasive Plants Solidago canadensis and Bidens frondosa. Master degree dissertation, Jiangxi Agricultural University, Nanchang. |
[苏启陶 (2019). 入侵植物加拿大一枝黄花和大狼把草传粉网络的地理变异. 硕士学位论文, 江西农业大学, 南昌.] | |
[38] | Sun HY, Xu LS, Feng H, Wang CL, Huang LL (2020). Prediction for potential geographic distribution of Valsamali in China based on MaxEnt model. Acta Agriculturae Boreali- occidentalis Sinica, 29, 461-466. |
[孙红云, 徐亮胜, 冯浩, 王程利, 黄丽丽 (2020). 基于MaxEnt模型预测苹果树腐烂病在中国的潜在地理分布. 西北农业学报, 29, 461-466.] | |
[39] | Wang RL, Li Q, Feng CH, Shi ZP (2017). Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecologica Sinica, 37, 8556-8566. |
[王茹琳, 李庆, 封传红, 石朝鹏 (2017). 基于MaxEnt的西藏飞蝗在中国的适生区预测. 生态学报, 37, 8556-8566.] | |
[40] | Wang WT, Gao SY, Wang SF (2019). Predictive studies of potential invasive areas for four poisonous weeds in Gansu Grassland. Acta Ecologica Sinica, 39, 5301-5307. |
[王文婷, 高思雨, 王淑璠 (2019). 甘肃草地4种毒杂草潜在入侵区预测研究. 生态学报, 39, 5301-5307.] | |
[41] | Wang YS, Wang ZH, Xing HF, Li JW, Sun S (2019). Prediction of potential suitable distribution of Davidia involucrata Baill in China based on MaxEnt. Chinese Journal of Ecology, 38, 1230-1237. |
[王雨生, 王召海, 邢汉发, 厉静文, 孙硕 (2019). 基于MaxEnt模型的珙桐在中国潜在适生区预测. 生态学杂志, 38, 1230-1237.] | |
[42] | Warren DL, Glor RE, Turelli M (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607-611. |
[43] |
Warren R, van der Wal J, Price J, Welbergen JA, Atkinson I, Ramirez-Villegas J, Osborn TJ, Jarvis A, Shoo LP, Williams SE, Lowe J (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678-682.
DOI URL |
[44] |
Wiens JJ (2016). Climate-related local extinctions are already widespread among plant and animal species. PLOS Biology, 14, e2001104. DOI: 10.1371/journal.pbio.2001104.
DOI URL |
[45] |
Wu XY, Dong SK, Liu SL, Liu QR, Han YH, Zhang XL, Su XK, Zhao HD, Feng J (2018). Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model. Biodiversity Science, 26, 138-148.
DOI URL |
[武晓宇, 董世魁, 刘世梁, 刘全儒, 韩雨晖, 张晓蕾, 苏旭坤, 赵海迪, 冯憬 (2018). 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别. 生物多样性, 26, 138-148.]
DOI |
|
[46] | Xiao YA, Zhang SS, Yan XH, Dong M (2015). New advances in effects of global warming on plant-pollinator networks. Acta Ecologica Sinica, 35, 3871-3880. |
[肖宜安, 张斯斯, 闫小红, 董鸣 (2015). 全球气候变暖影响植物-传粉者网络的研究进展. 生态学报, 35, 3871-3880.] | |
[47] | Xiao YE (2014). Phylogeography of Iris ensata (Iridacese), a Disjunct Species in East Asia, and Role of Pollinators on the Persistence of Rear Edge Populations. PhD dissertation, East China Normal University, Shanghai. |
[肖月娥 (2014). 东亚间断分布植物玉蝉花(Iris ensata)亲缘地理学及传粉互作对其后缘种群维持的作用. 博士学位论文, 华东师范大学, 上海.] | |
[48] | Xu XL, Cheng S, Wang FH, Wu J (2014). Measurement of the thermal resistance of Bombus terrestris L. Chinese Journal of Applied Entomology, 51, 1597-1603. |
[徐希莲, 程尚, 王凤贺, 吴杰 (2014). 短舌熊蜂耐热性研究. 应用昆虫学报, 51, 1597-1603.] | |
[49] |
Yackulic CB, Chandler R, Zipkin EF, Andrew Royle J, Nichols JD, Campbell Grant EH, Veran S (2013). Presence-only modelling using MAXENT: When can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243.
DOI URL |
[50] | Yang QJ, Li R (2021). Predicting the potential suitable habitats of Alsophila spinulosa and their changes. Chinese Journal of Applied Ecology, 32, 538-548. |
[杨启杰, 李睿 (2021). 桫椤的潜在适生区及其变化. 应用生态学报, 32, 538-548.]
DOI |
|
[51] | Yang SN (2019). Niche Dynamics and Environmental Adaptation of Feirana Species in the Qinling Mountains. Master degree dissertation, China West Normal University, Nanchong, Sichuan. |
[杨胜男 (2019). 秦岭地区隆肛蛙属物种的生态位动态与环境适应性. 硕士学位论文, 西华师范大学, 四川南充.] | |
[52] |
Yang X, Kushwaha S, Saran S, Xu J, Roy P (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87.
DOI URL |
[53] | Yao JY, Zhao NX, Chen YZ (2004). Brief review of fig-pollinator coevolution and Ficus classification. Acta Phytoecologica Sinica, 28, 271-277. |
[尧金燕, 赵南先, 陈贻竹 (2004). 榕树-传粉者共生体系的协同进化与系统学研究进展及展望. 植物生态学报, 28, 271-277.]
DOI |
|
[54] |
Yu YJ, Luo HL, Liu NN, Xiong DJ, Luo YB, Yang BY (2020). Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China. Biodiversity Science, 28, 769-778.
DOI URL |
[余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云 (2020). 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响. 生物多样性, 28, 769-778.]
DOI |
|
[55] |
Zhang KL, Yao LJ, Meng JS, Tao J (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326-1334.
DOI URL |
[56] | Zhang YB, Liu YL, Qin H, Meng QX (2019). Prediction on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China. Chinese Journal of Applied Ecology, 30, 496-502. |
[张殷波, 刘彦岚, 秦浩, 孟庆欣 (2019). 气候变化条件下山西翅果油树适宜分布区的空间迁移预测. 应用生态学报, 30, 496-502.]
DOI |
|
[57] |
Zhao M, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin. Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons [J]. Chin J Plant Ecol, 2023, 47(4): 491-505. |
[8] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[9] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[10] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[11] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[12] | Halibunuer , Gulzar ABDUKIRIM, Reyilamu MAIMAITITUERXUN, Aysajan ABDUSALAM. Flower syndrome and pollination characteristics of two flower morphs in Lycium ruthenicum (Solanaceae) [J]. Chin J Plant Ecol, 2022, 46(9): 1050-1063. |
[13] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[14] | ZENG Kai-Na, SUN Hao-Ran, SHEN Yi-Chun, REN Ming-Xun. Pollination network and seasonal dynamics of Yangshan Wetland in Hainan Island, China [J]. Chin J Plant Ecol, 2022, 46(7): 775-784. |
[15] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn