Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (8): 1001-1010.DOI: 10.17521/cjpe.2023.0144 cstr: 32100.14.cjpe.2023.0144
• Research Articles • Previous Articles Next Articles
QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing*()
Received:
2023-05-23
Accepted:
2023-08-03
Online:
2024-08-20
Published:
2023-08-31
Contact:
*LIU Qi-Jing(809918554@qq.com)
Supported by:
QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains[J]. Chin J Plant Ecol, 2024, 48(8): 1001-1010.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0144
Fig. 1 Seasonal climate variation characteristics of natural secondary Betula platyphylla forest on the north slope of Changbai Mountains. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative air humidity; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; Ts, soil temperature; VPD, vapor pressure deficit.
Fig. 2 Changes of cambium cell in different differentiation stages during xylem formation of Betula platyphylla. The points represent the average cell width of 4 sampled trees on the corresponding date, and the shaded areas represent the standard deviation.
年份 Year | 增大阶段 Enlargement | 细胞分裂持续时间(天) Duration of cell division (d) | 壁增厚阶段 Wall-thickening | 成熟阶段 Lignification | 生长季持续时间(天) Duration of growing season (d) | |||
---|---|---|---|---|---|---|---|---|
开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | |||
2020 | 143 ± 3 | 255 ± 3 | 113 ± 4 | 150 ± 2 | 260 ± 3 | 171 ± 4 | 265 ± 3 | 123 ± 4 |
2021 | 138 ± 2 | 254 ± 3 | 117 ± 4 | 140 ± 4 | 259 ± 4 | 163 ± 3 | 264 ± 4 | 128 ± 3 |
Table 1 Seasonal characteristics of radial growth of Betula platyphylla in 2020 and 2021(mean ± SD)
年份 Year | 增大阶段 Enlargement | 细胞分裂持续时间(天) Duration of cell division (d) | 壁增厚阶段 Wall-thickening | 成熟阶段 Lignification | 生长季持续时间(天) Duration of growing season (d) | |||
---|---|---|---|---|---|---|---|---|
开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | |||
2020 | 143 ± 3 | 255 ± 3 | 113 ± 4 | 150 ± 2 | 260 ± 3 | 171 ± 4 | 265 ± 3 | 123 ± 4 |
2021 | 138 ± 2 | 254 ± 3 | 117 ± 4 | 140 ± 4 | 259 ± 4 | 163 ± 3 | 264 ± 4 | 128 ± 3 |
Fig. 3 Seasonal patterns of xylem growth in Betula platyphylla. The points represent the total length of radial growth of the sampled tree of Betula platyphylla (including enlarging, wall-thickening and mature cells). Curves in A and B represent the Gompertz fitting curve of the sampled trees; and curves in C and D represent the corresponding daily growth rate.
年份 Year | 样树 Sampled tree | A | β | k | R2 | Rmax (μm·d-1) | Rmean (μm·d-1) | tp (d) |
---|---|---|---|---|---|---|---|---|
2020 | 1 | 876.29 | 4.87 | 0.025 | 0.95 | 8.23 | 5.02 | 191 |
2 | 1 314.61 | 8.09 | 0.043 | 0.90 | 20.97 | 12.79 | 186 | |
3 | 308.11 | 9.65 | 0.056 | 0.85 | 6.41 | 3.91 | 170 | |
4 | 1 814.03 | 7.03 | 0.039 | 0.91 | 25.80 | 15.73 | 182 | |
2021 | 1 | 1 400.39 | 10.39 | 0.061 | 0.84 | 31.33 | 19.11 | 171 |
2 | 2 095.70 | 6.76 | 0.038 | 0.92 | 29.12 | 17.75 | 178 | |
3 | 1 156.22 | 12.53 | 0.076 | 0.96 | 32.38 | 19.74 | 164 | |
4 | 2 303.34 | 5.24 | 0.029 | 0.96 | 24.22 | 14.77 | 184 |
Table 2 Parameter characteristics of Gompertz function fitting for each sampled tree of Betula platyphylla
年份 Year | 样树 Sampled tree | A | β | k | R2 | Rmax (μm·d-1) | Rmean (μm·d-1) | tp (d) |
---|---|---|---|---|---|---|---|---|
2020 | 1 | 876.29 | 4.87 | 0.025 | 0.95 | 8.23 | 5.02 | 191 |
2 | 1 314.61 | 8.09 | 0.043 | 0.90 | 20.97 | 12.79 | 186 | |
3 | 308.11 | 9.65 | 0.056 | 0.85 | 6.41 | 3.91 | 170 | |
4 | 1 814.03 | 7.03 | 0.039 | 0.91 | 25.80 | 15.73 | 182 | |
2021 | 1 | 1 400.39 | 10.39 | 0.061 | 0.84 | 31.33 | 19.11 | 171 |
2 | 2 095.70 | 6.76 | 0.038 | 0.92 | 29.12 | 17.75 | 178 | |
3 | 1 156.22 | 12.53 | 0.076 | 0.96 | 32.38 | 19.74 | 164 | |
4 | 2 303.34 | 5.24 | 0.029 | 0.96 | 24.22 | 14.77 | 184 |
Fig. 4 Pearson correlation between radial growth rate of Betula platyphylla and climatic factors. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative air humidity; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; Ts, soil temperature; VPD, vapor pressure deficit. *, p < 0.05; **, p < 0.01.
Fig. 5 Principal component (PC) analysis of radial growth rate of Betula platyphylla and climatic factors during rapid (A) and slow (B) growth periods. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative air humidity; RGR, radial growth rate; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; Ts, soil temperature; VPD, vapor pressure deficit.
[1] | Alam SA, Huang JG, Stadt KJ, Comeau PG, Dawson A, Gea-Izquierdo G, Aakala T, Hölttä T, Vesala T, Mäkelä A, Berninger F (2017). Effects of competition, drought stress and photosynthetic productivity on the radial growth of white spruce in western Canada. Frontiers in Plant Science, 8, 1915. DOI: 10.3389/fpls.2017.01915. |
[2] |
Begum S, Kudo K, Matsuoka Y, Nakaba S, Yamagishi Y, Nabeshima E, Rahman MH, Nugroho WD, Oribe Y, Jin HO, Funada R (2016). Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers. Annals of Botany, 117, 465-477.
DOI PMID |
[3] | Chen S, Wang YC, Yu LL, Zheng T, Wang S, Yue Z, Jiang J, Kumari S, Zheng CF, Tang HB, Li J, Li YQ, Chen JJ, Zhang WB, Kuang HH, et al. (2021). Genome sequence and evolution of Betula platyphylla. Horticulture Research, 8, 37. DOI: 10.1038/s41438-021-00481-7. |
[4] |
Day TA, DeLucia EH, Smith WK (1989). Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia, 80, 546-552.
DOI PMID |
[5] | Duchesne L, Houle D, D’Orangeville L (2012). Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agricultural and Forest Meteorology, 162- 163, 108-114. |
[6] | Fan Z, Bräuning A, Fu P, Yang R, Qi J, Grießinger J, Gebrekirstos A (2019). Intra-annual radial growth of Pinus kesiya var. langbianensis is mainly controlled by moisture availability in the Ailao Mountains, Southwestern China. Forests, 10, 899. DOI: 10.3390/f10100899. |
[7] |
Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006). Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany, 97, 943-951.
DOI PMID |
[8] |
Gruber A, Wieser G, Oberhuber W (2010). Opinion paper: effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing. European Journal of Forest Research, 129, 141-144.
PMID |
[9] | Guo MH, Lu Y, Wang WJ, Cui YZ (1999). The radial variation patterns of wood density and ring width in different Betula platyphylla provenances. Journal of Northeast Forestry University, 27(4), 29-32. |
[郭明辉, 鲁英, 王万进, 崔永志 (1999). 不同种源白桦木材密度和生长轮宽度径向变异模式. 东北林业大学学报, 27(4), 29-32.] | |
[10] |
Han YG, Zhou WM, Qi L, Zhou L, Zhong QL, Dai LM, Yu DP (2019). Tree radial growth-climate relationship in Changbai Mountain, Northeast China. Chinese Journal of Applied Ecology, 30, 1513-1520.
DOI |
[韩艳刚, 周旺明, 齐麟, 周莉, 仲庆林, 代力民, 于大炮 (2019). 长白山树木径向生长对气候因子的响应. 应用生态学报, 30, 1513-1520.]
DOI |
|
[11] | Huang J, Zhang Y, Wang M, Yu X, Deslauriers A, Fonti P, Liang EY, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Zhang J, et al. (2023). A critical thermal transition driving spring phenology of Northern Hemisphere conifers. Global Change Biology, 29, 1606-1617. |
[12] | Huang W, Zhang SB, Hu H (2015). Insusceptibility of oxygen- evolving complex to high light in Betula platyphylla. Journal of Plant Research, 128, 307-315. |
[13] | IPCC (Intergovernmental Panel on Climate Change) (2021). Climate Change 2021: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[14] | Jiang Y, Wang BQ, Dong MY, Huang YM, Wang MC, Wang B (2015). Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees, 29, 87-96. |
[15] |
Körner C (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI PMID |
[16] | Liu MJ, Chen QW, Lü JL, Li GQ, Du S (2023). Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region. Chinese Journal of Plant Ecology, 47, 227-237. |
[刘美君, 陈秋文, 吕金林, 李国庆, 杜盛 (2023). 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征. 植物生态学报, 47, 227-237.]
DOI |
|
[17] | Malik R, Rossi S, Sukumar R (2020). Cambial phenology in Abies pindrow (Pinaceae) along an altitudinal gradient in northwestern Himalaya. IAWA Journal, 41, 186-201. |
[18] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[19] | Meng SW, Yang FT, Dai XQ, Wang HM (2021). Radial growth dynamics of Chinese fir and its response to seasonal drought. Chinese Journal of Applied Ecology, 32, 3521-3530. |
[孟盛旺, 杨风亭, 戴晓琴, 王辉民 (2021). 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报, 32, 3521-3530.]
DOI |
|
[20] | Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P (2021). Turgor—A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229, 213-229. |
[21] | Qian NP, Gao HX, Xu ZZ, Song CJ, Dong CC, Zeng W, Sun Z, Siqing B, Liu QJ (2023). Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrochronologia, 77, 126045. DOI: 10.1016/j.dendro.2022.126045. |
[22] | Ren P, Rossi S, Camarero JJ, Ellison AM, Liang E, Peñuelas J (2018). Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany, 121, 617-624. |
[23] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang J, Jyske T, Kašpar J, King G, Krause C, Liang E, et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[24] | Shao XM, Wu XD (1997). Reconstruction of climate change on Changbai Mountain, northeast China using tree-ring data. Quaternary Sciences, 17(1), 76-85. |
[邵雪梅, 吴祥定 (1997). 利用树轮资料重建长白山区过去气候变化. 第四纪研究, 17(1), 76-85.] | |
[25] |
Vapaavuori EM, Rikala R, Ryyppö A (1992). Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiology, 10, 217-230.
PMID |
[26] | Wang LL, Gou XH, Xia JQ, Wang F, Zhang F, Zhang JZ (2021). Research progress on cambial activity of trees and the influencing factors. Chinese Journal of Applied Ecology, 32, 3761-3770. |
[王玲玲, 勾晓华, 夏敬清, 王放, 张芬, 张军周 (2021). 树木形成层活动及其影响因素研究进展. 应用生态学报, 32, 3761-3770.]
DOI |
|
[27] | Wang M, Bai SJ, Tao DL, Shan JP (1995). Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain. Chinese Journal of Applied Ecology, 6, 128-132. |
[王淼, 白淑菊, 陶大立, 单建平 (1995). 大气增温对长白山林木直径生长的影响. 应用生态学报, 6, 128-132.] | |
[28] | Wang XC, Zhang MH, Ji Y, Li ZS, Li M, Zhang YD (2017). Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia. Trees, 31, 415-427. |
[29] | Xia JQ, Gou XH, Wang LL, Wang F, Zhang JZ, Zhang F (2021). Stem radial growth of Picea crassifolia in response to climatic factors in the western Qilian Mountains, China. Chinese Journal of Applied Ecology, 32, 3585-3593. |
[夏敬清, 勾晓华, 王玲玲, 王放, 张军周, 张芬 (2021). 祁连山西部青海云杉径向生长对气候因子的响应. 应用生态学报, 32, 3585-3593.]
DOI |
|
[30] | Yang JW, Cooper DJ, Zhang X, Song WQ, Li ZS, Zhang YD, Zhao HY, Han SJ, Wang XC (2022). Climatic controls of Pinus pumila radial growth along an altitude gradient. New Forests, 53, 319-335. |
[31] | Yu J, Chen JJ, Meng SW, Zhou H, Zhou G, Gao LS, Wang YP, Liu QJ (2021). Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain, Northeast China. Chinese Journal of Applied Ecology, 32, 46-56. |
[于健, 陈佳佳, 孟盛旺, 周华, 周光, 高露双, 王永平, 刘琪璟 (2021). 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应. 应用生态学报, 32, 46-56.]
DOI |
|
[32] | Yu J, Luo CW, Xu QQ, Meng SW, Li JQ, Liu QJ (2016). Radial growth of Pinus koraiensis and carbon sequastration potential of the old growth forest in Changbai Mountain, Northeast China. Acta Ecologica Sinica, 36, 2626-2636. |
[于健, 罗春旺, 徐倩倩, 孟盛旺, 李俊清, 刘琪璟 (2016). 长白山原始林红松径向生长及林分碳汇潜力. 生态学报, 36, 2626-2636.] | |
[33] | Yuan DY (2020). Xylem Anatomical Characteristics of Main Trees Species in the East of Northeast China and Their Response to Climate Change. Master degree dissertation, Northeast Forestry University, Harbin. |
[苑丹阳 (2020). 东北东部主要树种木质部解剖特征及其对气候变化的响应. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[34] | Zhang J, Gou X, Manzanedo RD, Zhang F, Pederson N (2018). Cambial phenology and xylogenesis of Juniperus przewalskii over a climatic gradient is influenced by both temperature and drought. Agricultural and Forest Meteorology, 260- 261, 165-175. |
[35] | Zhang JZ (2018). Cambial Phenology and Intra-annual Radial Growth Dynamics of Conifers over the Qilian Mountains. PhD Dissertation, Lanzhou University, Lanzhou. |
[张军周 (2018). 祁连山树木形成层活动及年内径向生长动态监测研究. 博士学位论文, 兰州大学, 兰州.] | |
[36] | Zhang RB, Yuan YJ, Gou XH, Zhang TW, Zou C, Ji CR, Fan ZA, Qin L, Shang HM, Li XJ (2016). Intra-annual radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey) and its response to climate on the northern slopes of the Tianshan Mountains. Dendrochronologia, 40, 36-42. |
[37] |
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, Ziemińska K, Etzold S (2021). Why trees grow at night. New Phytologist, 231, 2174-2185.
DOI PMID |
[1] | Si-Yi CHEN Yan TANG Teng HE Yong-Kang JIANG Guangyuan Du. Xylem embolism characteristics and hydraulic safety risks of nine tree species in the Qinling Mountains [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[2] | ZHANG Fu-Chong, YU Ming-Han, ZHANG Jian-Ling, WANG Ping, DING Guo-Dong, HE Ying-Ying, SUN Hui-Yuan. Synergistic response mechanisms in xylem and phloem of Artemisia ordosica to changes in precipitation [J]. Chin J Plant Ecol, 2024, 48(7): 903-914. |
[3] | MA Lin, CHAO Lin, HE Yu-Sha, LI Zhong-Guo, WANG Ai-Hua, LIU Sheng-Yuan, HU Bao-Qing, LIU Yan-Yan. Relationship of embolism resistance with xylem anatomical structure and related traits of 12 tree species in tropical karst seasonal rainforests [J]. Chin J Plant Ecol, 2024, 48(7): 888-902. |
[4] | CHANG Chen-Hui, ZHU Biao, ZHU Jiang-Ling, JI Cheng-Jun, YANG Wan-Qin. Review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[5] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[6] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[7] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[8] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[9] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[10] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[11] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[12] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[13] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[14] | LU Chen-Xi, XU Man, SHI Xue-Jin, ZHAO Cheng, TAO Ze, LI Min, SI Bing-Cheng. Effects of different water isotope input methods based on Bayesian model MixSIAR on water uptake characteristic analysis results in apple orchards [J]. Chin J Plant Ecol, 2023, 47(2): 238-248. |
[15] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn