植物生态学报 ›› 2013, Vol. 37 ›› Issue (6): 551-557.DOI: 10.3724/SP.J.1258.2013.00056
所属专题: 生态化学计量
严正兵1,*,金南瑛1,*,韩廷申2,方精云1,韩文轩3,**()
收稿日期:
2013-03-20
接受日期:
2013-04-09
出版日期:
2013-03-20
发布日期:
2013-06-05
通讯作者:
韩文轩
基金资助:
YAN Zheng-Bing1,*,KIM Nam-Young1,*,HAN Ting-Shen2,FANG Jing-Yun1,HAN Wen-Xuan3,**()
Received:
2013-03-20
Accepted:
2013-04-09
Online:
2013-03-20
Published:
2013-06-05
Contact:
HAN Wen-Xuan
摘要:
研究植物碳(C)氮(N)磷(P)化学计量特征, 有助于了解C、N、P元素的分配规律和确定限制植物生长的元素类型, 理解生长速率调控的内在机制。该研究基于盆栽施肥试验, 测定不同N、P供应水平下拟南芥(Arabidopsis thaliana)叶片的生物量和C、N、P含量, 分析拟南芥的限制元素类型、验证生长速率假说、探讨N、P的内稳性差异和C、N、P元素间的异速生长关系。主要结果如下: 盆栽试验基质中限制元素是P, 施N过多可能引起毒害作用; 拟南芥的生长符合生长速率假说, 即随着叶片N:P和C:P的增加, 比生长速率显著减小; 叶片P含量存在显著的调整系数(3.5), 但叶片N含量与基质N含量之间无显著相关; 叶片N和P含量具有显著的异速生长关系, 但不符合N-P3/4关系, 施P肥导致表征N、P异速生长关系的幂指数(0.209)显著低于施N肥处理(0.466)。该研究首次基于温室培养实验分析了拟南芥C、N、P的化学计量特征及其对N、P添加的响应, 研究结果将为野外研究不同物种、群落或生态系统的化学计量特征提供参考。
严正兵,金南瑛,韩廷申,方精云,韩文轩. 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响. 植物生态学报, 2013, 37(6): 551-557. DOI: 10.3724/SP.J.1258.2013.00056
YAN Zheng-Bing,KIM Nam-Young,HAN Ting-Shen,FANG Jing-Yun,HAN Wen-Xuan. Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana. Chinese Journal of Plant Ecology, 2013, 37(6): 551-557. DOI: 10.3724/SP.J.1258.2013.00056
基质N、P 水平 Substrate N, P level | 基质有效氮含量a Substrate available Na content (mg·kg-1) | 基质有效磷含量b Substrate available Pb content (mg·kg-1) | 基质N:P (质量比) Substrate N:P (mass ratio) |
---|---|---|---|
CK | 180.73 | 12.12 | 14.91 |
N1 | 205.73 | 12.12 | 16.97 |
N2 | 230.73 | 12.12 | 19.03 |
N3 | 280.73 | 12.12 | 23.15 |
N4 | 380.73 | 12.12 | 31.40 |
N5 | 580.73 | 12.12 | 47.90 |
N6 | 780.73 | 12.12 | 64.39 |
P1 | 180.73 | 22.12 | 8.17 |
P2 | 180.73 | 32.12 | 5.63 |
P3 | 180.73 | 52.12 | 3.47 |
P4 | 180.73 | 92.12 | 1.96 |
P5 | 180.73 | 172.12 | 1.05 |
P6 | 180.73 | 252.12 | 0.72 |
表1 对照和各施肥水平下基质的N、P化学计量特征
Table 1 N and P stoichiometric characteristics in substrate of control (CK) and each fertilization treatment
基质N、P 水平 Substrate N, P level | 基质有效氮含量a Substrate available Na content (mg·kg-1) | 基质有效磷含量b Substrate available Pb content (mg·kg-1) | 基质N:P (质量比) Substrate N:P (mass ratio) |
---|---|---|---|
CK | 180.73 | 12.12 | 14.91 |
N1 | 205.73 | 12.12 | 16.97 |
N2 | 230.73 | 12.12 | 19.03 |
N3 | 280.73 | 12.12 | 23.15 |
N4 | 380.73 | 12.12 | 31.40 |
N5 | 580.73 | 12.12 | 47.90 |
N6 | 780.73 | 12.12 | 64.39 |
P1 | 180.73 | 22.12 | 8.17 |
P2 | 180.73 | 32.12 | 5.63 |
P3 | 180.73 | 52.12 | 3.47 |
P4 | 180.73 | 92.12 | 1.96 |
P5 | 180.73 | 172.12 | 1.05 |
P6 | 180.73 | 252.12 | 0.72 |
图1 不同氮磷肥处理对拟南芥叶生长速率的影响(平均值±标准误差)。A, 氮肥处理。B, 磷肥处理。处理同表1。不同字母表示各基质氮(磷)水平下叶生长速率存在显著差异(p < 0.05)。
Fig. 1 Effect of different N (P) fertilization treatment on leaf growth rate (G) of Arabidopsis thaliana (mean ± SE). A, nitrogen fertilization treatment. B, phosphorus fertilization treatment. Treatment see Table 1. Different letters indicate significant difference (p < 0.05) in leaf growth rate between different substrate N (P) levels.
图3 拟南芥叶N:P、C:P和叶比生长速率(u)的关系。αRMA表示简约主轴回归斜率。A, N:P-u。B, C:P-u。
Fig. 3 Relationship between Leaf N:P, C:P and leaf specific growth rate (u) of Arabidopsis thaliana. αRMA indicates the reduced major axis regression slope. A, N:P-u. B, C:P-u.
图4 拟南芥叶片N、P含量和基质有效N、P含量的关系。H, 调整系数。A, 叶N含量。B, 叶P含量。
Fig. 4 Relationship between leaf N (P) content of Arabidopsis thaliana and substrate available N (P) content. H, regulation coefficient. A , leaf N content. B, leaf P content.
log Y vs. log X | 处理 Treatment | αRMA | 95% CI | n | R2 | p |
---|---|---|---|---|---|---|
logN vs. logC | 施氮肥 N-fertilization | 4.15 | [2.67, 6.47] | 21 | 0.091 | 0.183 |
施磷肥 P-fertilization | -3.76 | [-5.68, -2.49] | 21 | 0.217 | 0.033 | |
logP vs. logC | 施氮肥 N-fertilization | 8.92 | [5.62, 14.15] | 21 | 0.007 | 0.725 |
施磷肥 P-fertilization | -17.98 | [-22.28, -14.51] | 21 | 0.798 | <0.000 1 | |
logN vs. logP | 施氮肥 N-fertilization | 0.466a | [0.373, 0.581] | 21 | 0.785 | <0.000 1 |
施磷肥 P-fertilization | 0.209b | [0.141, 0.311] | 21 | 0.282 | 0.013 |
表2 拟南芥叶片C、N和P含量的异速生长关系
Table 2 Allometric relationship among leaf C, N, P content of Arabidopsis thaliana
log Y vs. log X | 处理 Treatment | αRMA | 95% CI | n | R2 | p |
---|---|---|---|---|---|---|
logN vs. logC | 施氮肥 N-fertilization | 4.15 | [2.67, 6.47] | 21 | 0.091 | 0.183 |
施磷肥 P-fertilization | -3.76 | [-5.68, -2.49] | 21 | 0.217 | 0.033 | |
logP vs. logC | 施氮肥 N-fertilization | 8.92 | [5.62, 14.15] | 21 | 0.007 | 0.725 |
施磷肥 P-fertilization | -17.98 | [-22.28, -14.51] | 21 | 0.798 | <0.000 1 | |
logN vs. logP | 施氮肥 N-fertilization | 0.466a | [0.373, 0.581] | 21 | 0.785 | <0.000 1 |
施磷肥 P-fertilization | 0.209b | [0.141, 0.311] | 21 | 0.282 | 0.013 |
[1] |
Acharya K, Kyle M, Elser JJ (2004). Biological stoichiometry of daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnology and Oceanography, 49, 656-665.
DOI URL |
[2] |
Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics, 39, 153-170.
DOI URL |
[3] |
Chapin FS III, Vitousek PM, van Cleve K (1986). The nature of nutrient limitation in plant communities. The American Naturalist, 127, 48-58.
DOI URL |
[4] | Dong M (1997). Survey, Observation and Analysis of Terrestrial Biocommunities. China Standard Press, Beijing. 154-160. (in Chinese) |
[ 董鸣 (1997). 陆地生物群落调查观测分析. 中国标准出版社, 北京. 154-160.] | |
[5] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[6] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N: P stoichiometry. BioScience, 46, 674-684.
DOI URL |
[7] |
Elser JJ, O’Brien WJ, Dobberfuhl DR, Dowling TE (2000). The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology, 13, 845-853.
DOI URL |
[8] | Falster DS, Warton DI, Wright IJ (2003). (S)MATR: Standardized Major Axis Tests and Routines. Version 1.0. http://www.bio.mq.edu.au/ecology/SMATR. Cited 25 Jan. 2013. |
[9] |
Güsewell S (2004). N: P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[10] |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI URL |
[11] |
Hessen DO, Jensen TC, Kyle M, Elser JJ (2007). RNA responses to N- and P-limitation: reciprocal regulation of stoichiometry and growth rate in Brachionus. Functional Ecology, 21, 956-962.
DOI URL |
[12] | Hessen DO, Lyche A (1991). Inter- and intraspecific variations in zooplankton element composition. Archiv für Hydrobiologie, 121, 355-363. |
[13] |
Karimi R, Folt CL (2006). Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecology Letters, 9, 1273-1283.
DOI URL PMID |
[14] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[15] |
Koojiman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
DOI URL |
[16] |
Loladze I, Elser JJ (2011). The origins of the Redfield nitrogen- to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14, 244-250.
URL PMID |
[17] |
Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
DOI URL |
[18] |
Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771.
DOI URL PMID |
[19] | Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998). Arabidopsis thaliana: a model plant for genome analysis. Science, 282, 662, 679-682. |
[20] | Niklas KJ (1994). Plant Allometry: the Scaling of form and Process. University of Chicago Press, Chicago. 7-34. |
[21] |
Niklas KJ (2006). Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Annals of Botany, 97, 155-163.
URL PMID |
[22] |
Niklas KJ, Cobb ED (2005). N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 92, 1256-1263.
DOI URL PMID |
[23] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[24] |
Rhee GY (1978). Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography, 23, 10-25.
DOI URL |
[25] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. 8. |
[26] |
Sterner RW, Schulz KL (1998). Zooplankton nutrition: recent progress and a reality check. Aquatic Ecology, 32, 261-279.
DOI URL |
[27] |
Watts T, Woods HA, Hargand S, Elser JJ, Markow TA (2006). Biological stoichiometry of growth in Drosophila melanogaster. Journal of Insect Physiology, 52, 187-193.
DOI URL PMID |
[28] | Wu DX, Wei WS, Song CY (2012). Quality Assurance and Quality Control of Data for Long-term Biological Observation in Terrestrial Ecosystems. China Environmental Science Press, Beijing. 109-113. (in Chinese) |
[ 吴冬秀, 韦文珊, 宋创业 (2012). 陆地生态系统生物观测数据: 质量保证与控制. 中国环境科学出版社, 北京 109-113.] | |
[29] | Yu Q (2009). Ecological Stoichiometric Study on Vascular Plants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botanty, Chinese Academy of Science, Beijing. 56-67. (in Chinese with English abstract). |
[ 庾强 (2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京. 56-67.] | |
[30] | Yu Q, Wu HH, He NP, Lü XT, Wang ZP, Elser JJ, Wu JG, Han XG (2012). Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass. PLoS ONE, 3(7), e32162. |
[31] | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270. |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[3] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[4] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[5] | 宁志英, 李玉霖, 杨红玲, 张子谦. 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性[J]. 植物生态学报, 2019, 43(1): 46-54. |
[6] | 蒋利玲, 曾从盛, 邵钧炯, 周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017, 41(4): 450-460. |
[7] | 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630. |
[8] | 杨清培, 欧阳明, 杨光耀, 宋庆妮, 郭春兰, 方向民, 陈昕, 黄兰, 陈伏生. 竹子生态化学计量学研究: 从生物学基础到竹林培育学应用[J]. 植物生态学报, 2016, 40(3): 264-278. |
[9] | 石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦. 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应[J]. 植物生态学报, 2015, 39(10): 962-970. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19