植物生态学报 ›› 2010, Vol. 34 ›› Issue (8): 989-999.DOI: 10.3773/j.issn.1005-264x.2010.08.012
收稿日期:
2009-12-01
接受日期:
2010-01-20
出版日期:
2010-12-01
发布日期:
2010-09-28
通讯作者:
周禾
作者简介:
* E-mail: zhouhe@cau.edu.cn
SUN Xiao-Ling1, XU Yue-Fei1, MA Lu-Yi2, ZHOU He1,*()
Received:
2009-12-01
Accepted:
2010-01-20
Online:
2010-12-01
Published:
2010-09-28
Contact:
ZHOU He
摘要:
叶绿素在植株体内负责光能的吸收、传递和转化, 类胡萝卜素则行使光能捕获和光破坏防御两大功能, 它们在光合作用中起着非常重要的作用。该文综述了几大主要光合色素的分布和功能, 以及不同物种的色素含量和构成差异。阳生植物的叶黄素库较大, 但脱环氧化水平不及阴生植物。黄体素与叶黄素库的比值与植物的耐阴性呈正相关关系。由不同的遮阴源造成的遮阴环境, 光强和光质有很大的差异, 总体来说对植物生长的影响, 建筑物遮阴<阔叶林遮阴<针叶林遮阴。光强的改变可诱导类胡萝卜素的两大循环——叶黄素循环和黄体素循环。由光强诱导的叶绿素含量和叶绿素a/b比值的改变与该物种的耐阴性无关。短时间的遮阴不会对植物的生长造成危害, 叶黄素库的大小不仅与每天接受的光量子有关, 更与光量子在一天的分布有关, 因为光照和温度是协同作用的。光合作用或色素构成是蓝光、红光和远红光共同作用的结果, 不是某一种单色光所能替代的。我们总结了影响植物色素构成的内因和外因, 指出植物主要通过调整光反应中心和捕光天线色素蛋白复合体的比例, 以及两个光系统的比值来调整色素含量和构成以适应不同的光照条件, 提出了现存研究中存在的一些问题, 旨在为今后的相关研究提供建议。
孙小玲, 许岳飞, 马鲁沂, 周禾. 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010, 34(8): 989-999. DOI: 10.3773/j.issn.1005-264x.2010.08.012
SUN Xiao-Ling, XU Yue-Fei, MA Lu-Yi, ZHOU He. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 2010, 34(8): 989-999. DOI: 10.3773/j.issn.1005-264x.2010.08.012
图1 参与光破坏防御与捕光作用的主要的类胡萝卜素的转化流程图(引自McElroy et al., 2006, 略有改动)。
Fig. 1 Schematic of conversion pathway of primary plant carotenoids responsible for photoprotection and light harvesting (adapted from McElroy et al., 2006).
图2 落叶树遮阴、针叶树遮阴、建筑物遮阴和正常光照下不同波长的光占光合光量子与远红外光光量子之和的比例(测定地点: 美国俄亥俄州哥伦布市) (引自Bell et al., 2000, 略有改动)
Fig. 2 Proportion of photosynthetic photon flux plus far-red quanta (PPFFR; μmol·s-1·m-2) under deciduous shade, coniferous shade, building shade and full sun in Columbus, Ohio, USA (Adapted from Bell et al., 2000).
图3 落叶树遮阴、针叶树遮阴、建筑物遮阴和正常光照下的光合光量子的日变化动态图(测定地点: 美国俄亥俄州哥伦布市); 在150和867 μmol·m-2·s-1的横线代表多年生黑麦草的光补偿点和光饱和光强(引自Bell et al., 2000, 略有改动)。
Fig. 3 Diurnal photosynthetic photo flux (PPF) under deciduous shade, coniferous shade, building shade and full sun in Columbus, Ohio, USA. Horizontal lines at 150 and 867 μmol·m-2·s-1 represent the approximate light compensation and saturation points of perennial ryegrass (Adapted from Bell et al., 2000).
图4 叶绿素a、叶绿素b和类胡萝卜素的吸收波长。 来源: http://www.life.uiuc.edu/govindjee/paper/fig.5.gif。
Fig. 4 Absorption spectra of chlorophyll a, chlorophyll b and carotenoids. Source: http://www.life.uiuc.edu/govindjee/paper/fig.5.gif. Cited: Aug. 2009.
[1] |
Amunts A, Drory O, Nelson N (2007). The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature, 447, 58-63.
URL PMID |
[2] | Atanasova L, Stefanov D, Yordanov I, Kornova K, Kavard- zikov L (2003). Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut (Juglans regia L.) trees. Photosynt- hetica, 41, 289-292. |
[3] | Baig MJ, Anand A, Mandal PK, Bhatt RK (2005). Irradiance influences contents of photosynthetic pigments and proteins in tropical grasses and legumes. Photosynthetica, 43, 47-53. |
[4] | Bell GE, Danneberger TK (1999). Temporal shade on creeping bentgrass turf. Crop Science, 39, 1142-1146. |
[5] | Bell GE, Danneberger TK, McMahon MJ (2000). Spectral irradiance available for turfgrass growth in sun and shade. Crop Science, 40, 189-195. |
[6] | Bertamini M, Muthuchelian K, Nedunchezhian N (2006). Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica, 44, 227-234. |
[7] |
Bradburne JA, Kasperbauer MJ, Mathis JN (1989). Reflected far-red light effects on chlorophyll and light-harvesting chlorophyll protein (LHC-II) contents under field conditions. Plant Physiology, 91, 800-803.
URL PMID |
[8] | Chu ZX (储钟稀), Tong Z (童哲), Feng LJ (冯丽洁), Zhang Q (张群), Wen XG (温晓刚), Song ST (宋森田), Zhu XF (朱孝凤) (1999). Effect of different light quality on photosynthetic characteristics of cucumber leaves. Acta Botanica Sinica (植物学报), 41, 867-870. (in Chinese with English abstract) |
[9] | Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007). Different roles of α- and β-branch xanthophylls in photosystem assembly and photoprotection. Journal of Biological Chemistry, 282, 35056-35068. |
[10] |
Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006). Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biology, 6, 32.
URL PMID |
[11] |
Davison PA, Hunter CN, Horton P (2002). Overexpression of [beta]-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature, 418, 203-206.
DOI URL PMID |
[12] | Demmig-Adams B, Adams WW III (1992). Carotenoid composition in sun and shade leaves of plants with different life forms. Plant, Cell and Environment, 15, 411-419. |
[13] |
Demmig-Adams B, Adams WW III (2000). Harvesting sunlight safely. Nature, 403, 371-374.
DOI URL PMID |
[14] | Demmig-Adams B, Adams WW III (2006). Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist, 172, 11-21. |
[15] | Demmig-Adams B, Gilmore AM, Adams WW III (1996). Carotenoids 3: in vivo function of carotenoids in higher plants. Journal of the Federation of American Societies for Experimental Biology, 14, 402-412. |
[16] | Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Mänd P, Kull O, Laisk A (2005). Adjustment of leaf photosynthesis to shade in a natural canopy: reallocation of nitrogen. Plant, Cell and Environment, 28, 389-401. |
[17] |
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004). Architecture of the photosynthetic oxygen- evolving center. Science, 303, 1831-1838.
URL PMID |
[18] | García-Plazaola JI, Becerril JM (2000). Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins. Trees, 14, 339-343. |
[19] |
García-Plazaola JI, Matsubara S, Osmond CB (2007). The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Functional Plant Biology, 34, 759-773.
DOI URL PMID |
[20] | Gilmore AM, Yamamoto HY (1991). Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. Journal of Chromatography A, 543, 137-145. |
[21] |
Glick RE, McCauley SW, Melis A (1985). Effect of light quality on chloroplact-membrane organization and function in pea. Planta, 164, 487-494.
URL PMID |
[22] | Hansen U, Fiedler B, Rank B (2002a). Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance. Trees, 16, 354-364. |
[23] | Hansen U, Schneiderheinze J, Rank B (2002b). Is the lower shade tolerance of Scots pine, relative to pedunculate oak, related to the composition of photosynthetic pigments? Photosynthetica, 40, 369-374. |
[24] | Hobe S, Trostmann I, Raunser S, Paulsen H (2006). Assembly of the major light-harvesting chlorophyll-a/b complex: thermodynamics and kinetics of neoxanthin binding. Journal of Biological Chemistry, 281, 25156-25166. |
[25] |
Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science, 307, 433-436.
URL PMID |
[26] | Jiang Y, Duncan RR, Carrow RN (2004). Assessment of low light tolerance of seashore paspalum and bermudagrass. Crop Science, 44, 587-594. |
[27] | Johnson GN, Scholes JD, Horton P, Young AJ (1993). Relationships between carotenoid composition and growth habit in British plant species. Plant, Cell & Environment, 16, 681-686. |
[28] |
Kim JH, Glick RE, Melis A (1993). Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts. Plant Physiology, 102, 181-190.
URL PMID |
[29] | Koh KJ, Bell GE, Martin DL, Walker NR (2003). Shade and airflow restriction effects on creeping bentgrass golf greens. Crop Science, 43, 2182-2188. |
[30] |
Leong TY, Goodchild DJ, Anderson JM (1985). Effect of light quality on the composition, function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm.) Hook. Plant Physiology, 78, 561-567.
URL PMID |
[31] | Lin ZF (林植芳), Peng CL (彭长连), Lin GZ (林桂珠) (2006). Lutein and lutein epoxide-lutein cycle in plants. Plant Physiology Communications (植物生理学通讯), 42, 385-394. (in Chinese with English abstract) |
[32] |
Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004). Crystal structure of spinach major light-harvesting complex at 2.72Å resolution. Nature, 428, 287-292.
DOI URL PMID |
[33] |
Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005). Towards complete cofactor arrangement in the 3.0Å resolution structure of photosystem II. Nature, 438, 1040-1044.
URL PMID |
[34] | Ma JZ (马建忠), Lou SQ (娄世庆), Kuang TY (匡廷云), Li J (黎家), Tong Z (童哲), Tang PS (汤佩松) (1997). The effects of light quality on the development of chloroplast photosystems and the transcription of psbA gene of broomcorn millet (Panicum miliaceum). Acta Genetica Sinica (遗传学报), 24, 464-470. (in Chinese with English abstract) |
[35] | Matsubara S, Gilmore AM, Osmond CB (2001). Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii. Functional Plant Biology, 28, 793-800. |
[36] |
Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009). Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Functional Plant Biology, 36, 20-36.
URL PMID |
[37] |
Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K (2008). Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. Plant, Cell and Environment, 31, 548-561.
URL PMID |
[38] |
Matsubara S, Morosinotto T, Osmond CB, Bassi R (2007). Short- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes. Plant Physiology, 144, 926-941.
URL PMID |
[39] |
Maxwell K, Marrison JL, Leech RM, Griffiths H, Horton P (1999). Chloroplast acclimation in leaves of Guzmania monostachia in response to high light. Plant Physiology, 121, 89-96.
DOI URL PMID |
[40] | McElroy JS, Kopsell DA, Sorochan JC, Sams CE (2006). Response of creeping bentgrass carotenoid composition to high and low irradiance. Crop Science, 46, 2606-2612. |
[41] |
Munné-Bosch S, Peñuelas J (2003). Photo-and antioxidative protection during summer leaf senescence in Pistacia lentvscus L. grown under mediterranean field conditions. Annals of Botany, 92, 385-391.
URL PMID |
[42] | Murchie EH, Horton P (1997). Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant, Cell & Environment, 20, 438-448. |
[43] | Murchie EH, Horton P (1998). Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant, Cell & Environment, 21, 139-148. |
[44] | Ramalho JC, Marques NC, Semedo JN, Matos MC, Quartin VL (2002). Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biology, 4, 112-120. |
[45] | Rosevear MJ, Young AJ, Johnson GN (2001). Growth conditions are more important than species origin in determining leaf pigment content of British plant species. Functional Ecology, 15, 474-480. |
[46] |
Thayer SS, Björkman O (1990). Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynthesis Research, 23, 331-343.
URL PMID |
[47] |
Thayer SS, Björkman O (1992). Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynthesis Research, 33, 213-225.
URL PMID |
[48] | Wherley BG, Gardner DS, Metzger JD (2005). Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity. Crop Science, 45, 562-568. |
[49] | Xu L (许莉), Liu SQ (刘世琦), Qi LD (齐连东), Liang QL (梁庆玲), Yu WY (于文艳) (2007). Effect of light quality on leaf lettuce photosynthesis and chlorophyll fluorescence. Chinese Agricultural Science Bulletin (中国农学通报), 23, 96-100. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[6] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[7] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[10] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[11] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[12] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[13] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[14] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[15] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19