Chin J Plan Ecolo ›› 2007, Vol. 31 ›› Issue (1): 150-165.doi: 10.17521/cjpe.2007.0019

• Research Articles • Previous Articles     Next Articles

PLANT FUNCTIONAL TRAITS, ENVIRONMENTS AND ECOSYSTEM FUNCTIONING

MENG Ting_Ting1,2; NI Jian1*; Wang Guo_Hong1   

  1. 1 Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2007-01-30 Published:2007-01-30
  • Contact: NI Jian

Abstract:

Plant traits link environmental factors, individuals and ecosystem structure and functions as plants respond and adapt to the environment. This review introduces worldwide classification schemes of plant functional traits and summarizes research on the relationships between plant functional traits and environmental factors such as climate (e.g., temperature, precipitation and light), geographical variation (e.g., topography, ecological gradients and altitude), nutrients and disturbance (including fire, grazing, invasion and land use), as well as between plant functional traits and ecosystem functions. We synthesize impacts of global change (e.g., climate change) on plant functional traits of individuals and plant communities. Research on plant functional traits is very fruitful, being applicable to research on global change, paleovegetation and paleoclimate reconstruction, environmental monitoring and assessment and vegetation conservation and restoration. However, further studies at large scale and including multi-environmental factors are needed and methods of measuring traits need to be improved. In the future, study of plant functional traits in China should be accelerated in a clear and systematic way.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[9] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .
[10] Gu An-gen;Wang Mao and Wang Li-jun. Different Opinions on the Origins and Evolutions of Pteridophyte and Oymnosperms[J]. Chin Bull Bot, 1990, 7(02): 58 -62 .