Chin J Plan Ecolo ›› 2007, Vol. 31 ›› Issue (3): 513-520.doi: 10.17521/cjpe.2007.0064

• Research Articles • Previous Articles     Next Articles


HU Sheng-Rong1; GAO Yong1*; WU Fei2; MI Zhi-Ying1; ZHANG Yu1   

  1. 1 College of Ecology and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China; 2 Library of Inner Mongolia Normal University, Hohhot 010010, China
  • Online:2007-05-30 Published:2007-05-30
  • Contact: GAO Yong


Aims Use of saline land has become a major agricultural issue around the world. China has 27 millions kilometer saline land, and the area is increasing. Our objective was to compare the germination ability of the saline-tolerant Bromus stamineus from the USA and B. inermis cv. Xilinguole under saline conditions.
Methods We applied Na2SO4, NaCl and MgCl2 at concentrations of 0.5%, 1.0% and 1.5% for salt stress treatments and recorded germination percentage, germination energy, germination index, germination value etc. We put seeds of the two plants in culture dishes covered with a filter paper and a glass bell jar with a small hole. Each culture dish was put on a beaker containing different salt solution, with gauze connecting the solution and the filter paper. The gauze extended outside the bell jar to evaporate and avoid salt accumulation on the filter paper, keeping the germination environment constant. 
Important findings Germination percentage, germination index and germination value for both species declined with increased salinity, with values reduced more for B. inermis cv. Xilinguole than for B. stamineus. Times for seeds to germinate and complete their germination were prolonged under high salinity stress. NaCl had greater effects than Na2SO4 and MgCl2 on both species. Overall, B. stamineus exhibited greater germination ability with salt stress than B. inermis cv. Xilinguole.

No related articles found!
Full text



[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .