Chinese Journal of Plant Ecology ›› 2015, Vol. 39 ›› Issue (10): 990-1002.doi: 10.17521/cjpe.2015.0096

• Research Articles • Previous Articles     Next Articles

Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China

Yong-Tao HUANG1,2, Lan YAO1, Xun-Ru AI1, Shi-An LÜ3, Yi DING2,4,*()   

  1. 1School of Forestry and Horticulture, Hubei University for Nationalities, Enshi, Hubei 445000, China

    2Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China

    3Xingdoushan National Nature Reserve, Enshi, Hubei 445000, China

    4Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
  • Online:2015-10-24 Published:2015-10-01
  • Contact: Yi DING E-mail:ydingcaf@163.com

Abstract: <i>Aims</i>

The subtropical evergreen-deciduous broadleaved mixed forest is the largest extant natural vegetation type in southwest Hubei. However, little knowledge exists on the types and compositions (especially the relative ratios of evergreen versus deciduous species) of this forest vegetation. Here, we quantitatively classify the less studied forest vegetation into different community types, compare their size and composition structure, and analyze species-environment relationships which is the basis for further understanding the biodiversity maintenance mechanism and reasonable protection and utilization of this forest.

<i>Methods</i>

We established 92 20 m × 20 m plots of subtropical evergreen-deciduous broadleaved mixed forest in two national nature reserves in Enshi, Hubei Province, China. All species with stems ≥1 cm diameter at breast height (DBH) in each plot were identified and mapped. These plots were classified by using two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis (DCA). The species richness, abundance, basal area and importance value were chosen to compare structure, species composition and evergreen and deciduous ratio. Permutation-based multiple regression on distance matrices and multiple stepwise regression analysis were used to examine the relationship between species distribution and environmental factors.

<i>Important findings</i>

Our results showed that the subtropical evergreen-deciduous broadleaved mixed forest in the southwest of Hubei could be classified into five community types based on quantitative methods: i.e. Cyclobalanopsis glauca-Eurya alata + Camellia cuspidate (community type I), Carpinus fargesiana + Cyclo- balanopsis glauca-Eurya alata (community type II), Carpinus fargesiana + Cyclobalanopsis glauca-Weigela japonica (community type III), Fagus lucida + Cyclobalanopsis multinervis-Eurya alata (community type IV) and Carpinus fargesiana + Daphniphyllum macropodum + Lithocarpus cleistocarpus-Eurya alata (community type V). Species richness, abundance, basal area and importance value of evergreen and deciduous species in each community types were different. Deciduous species in community II, community III and community V were significantly higher than evergreen species in terms of species richness, stem abundance, basal area and importance value, but they had no significant differences in community I and community IV. The richness of deciduous species in most community types were higher than those of evergreen species, meanwhile the abundance, basal area and importance value of deciduous species in the small size classes (1 cm ≤ DBH < 5 cm) in each community types were lower than those of evergreen species. In middle size classes (5 cm ≤ DBH < 10 cm), the richness, abundance, basal area and importance value of deciduous species were higher than those of evergreen species in community II, community III and community V. However, in community I and community IV, the evergreen species were larger than deciduous species in the four indexes. The richness of deciduous species in majority of the community types were higher than those of evergreen species in large size classes (DBH ≥ 10 cm). The elevation, slope and aspect, soil total nitrogen content, soil total phosphorus content, soil available nitrogen content and soil available phosphorus content were the major factors affecting evergreen and deciduous species distribution across the five community types.

Key words: community type, the evergreen-deciduous broadleaved mixed forest, environmental factors, ratio of deciduous and evergreen species, quantitative classification

Fig. 1

Dendrogram of TWINSPAN classification for 92 plots in the subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China. D, division number; N, number of plot."

Fig. 2

Two-dimensional DCA ordination diagram for 92 plots in the subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China. Roman numerals (I, II, III, IV, V) indicate different community types."

Table 1

Importance value ( IV ) of the top 10 species in the five community types in the subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China"

群落类型 Community type 物种 Species 多度 Abundance 胸径 DBH (cm) 重要值 IV 叶习性 Leaf habit
群落I 青冈 Cyclobalanopsis glauca 752 6.38 2.48 常绿 Evergreen
Type I 翅柃 Eurya alata 599 4.02 1.12 常绿 Evergreen
尖连蕊茶 Camellia cuspidata 487 3.64 1.11 常绿 Evergreen
木荷 Schima superba 248 5.94 0.99 常绿 Evergreen
山矾 Symplocos sumuntia 535 3.05 0.95 常绿 Evergreen
锥栗 Castanea henryi 17 53.96 0.83 落叶 Deciduous
黄丹木姜子 Litsea elongata 385 2.85 0.82 常绿 Evergreen
薄叶山矾 Symplocos anomala 207 3.59 0.39 常绿 Evergreen
茶条果 Symplocos phyllocalyx 137 3.81 0.38 常绿 Evergreen
四照花 Dendrobenthamia japonica 70 7.58 0.36 落叶 Deciduous
群落II 川陕鹅耳枥 Carpinus fargesiana 669 4.05 1.28 落叶 Deciduous
Type II 山矾 Symplocos sumuntia 1 007 2.57 1.26 常绿 Evergreen
青冈 Cyclobalanopsis glauca 382 4.84 1.02 常绿 Evergreen
四照花 Dendrobenthamia japonica 367 3.9 0.84 落叶 Deciduous
亮叶桦 Betula luminifera 92 15.45 0.78 落叶 Deciduous
翅柃 Eurya alata 452 2.44 0.65 常绿 Evergreen
水马桑 Weigela japonica 172 4.51 0.40 落叶 Deciduous
灯台树 Bothrocaryum controversum 68 8.54 0.36 落叶 Deciduous
黄丹木姜子 Litsea elongata 136 3.13 0.34 常绿 Evergreen
枫香树 Liquidambar formosana 56 10.92 0.31 落叶 Deciduous
群落III 川陕鹅耳枥 Carpinus fargesiana 1 108 4.03 1.63 落叶 Deciduous
Type III 水马桑 Weigela japonica 843 3.89 1.41 落叶 Deciduous
青冈 Cyclobalanopsis glauca 850 3.93 1.18 常绿 Evergreen
四照花 Dendrobenthamia japonica 580 3.25 0.82 落叶 Deciduous
灰柯 Lithocarpus henryi 353 4.90 0.73 常绿 Evergreen
亮叶桦 Betula luminifera 144 9.80 0.72 落叶 Deciduous
小叶青冈 Cyclobalanopsis myrsinifolia 432 4.76 0.68 常绿 Evergreen
盐肤木 Rhus chinensis 163 7.14 0.57 落叶 Deciduous
贵定桤叶树 Clethra cavaleriei 355 3.11 0.57 落叶 Deciduous
山鸡椒 Litsea cubeba 344 3.08 0.57 落叶 Deciduous
群落IV 光叶水青冈 Fagus lucida 325 9.77 1.64 常绿 Evergreen
Type IV 多脉青冈 Cyclobalanopsis multinervis 414 6.87 1.23 落叶 Deciduous
翅柃 Eurya alata 526 3.13 0.95 常绿 Evergreen
川陕鹅耳枥 Carpinus fargesiana 140 8.16 0.62 落叶 Deciduous
宜昌润楠 Machilus ichangensis 77 7.88 0.31 常绿 Evergreen
交让木 Daphniphyllum macropodum 72 7.12 0.28 常绿 Evergreen
杜鹃 Rhododendron simsii 196 2.11 0.20 常绿 Evergreen
荚蒾 Viburnum dilatatum 119 2.04 0.20 落叶 Deciduous
光叶山矾 Symplocos lancifolia 60 4.28 0.17 常绿 Evergreen
包果柯 Lithocarpus cleistocarpus 48 7.69 0.17 常绿 Evergreen
群落V 川陕鹅耳枥 Carpinus fargesiana 1 359 7.63 4.67 落叶 Deciduous
Type V 翅柃 Eurya alata 1 710 2.84 2.53 常绿 Evergreen
包果柯 Lithocarpus cleistocarpus 502 8.13 1.71 常绿 Evergreen
交让木 Daphniphyllum macropodum 461 5.08 1.53 常绿 Evergreen
亮叶桦 Betula luminifera 201 12.09 1.40 落叶 Deciduous
齿缘吊钟花 Enkianthus serrulatus 1 268 3.03 1.37 落叶 Deciduous
长蕊杜鹃 Rhododendron stamineum 854 3.29 1.17 常绿 Evergreen
水马桑 Weigela japonica 345 5.56 1.17 落叶 Deciduous
锥栗 Castanea henryi 145 16.32 1.16 落叶 Deciduous
石灰花楸 Sorbus folgneri 519 4.91 1.09 落叶 Deciduous

Fig. 3

Species richness, abundance, basal area and importance value of the five forest types in the subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China (mean ± SD). Different lowercase letters (a, b) indicate significant differences at the level of 0.05. I, II, III, IV, V indicate different community types: Cyclobalanopsis glauca-Eurya alata + Camellia cuspidata, Carpinus fargesiana + Cyclobalanopsis glauca-Eurya alata, Carpinus fargesiana + Cyclobalanopsis glauca-Weigela japonica, Fagus lucida + Cyclobalanopsis multinervis-Eurya alata, Carpinus fargesiana + Daphniphyllum macropodum + Lithocarpus cleistocarpus-Eurya alata."

Fig. 4

Evergreen/deciduous ratio of species richness, abundance, basal area and importance value with size class in subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China. a, DBH 1-5 cm; b, DBH 5-10 cm; c, DBH ≥10 cm; DBH, diameter at breast height. I-V see Fig. 3."

Table 2

Effects of environmental factors on species distribution in subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China"

环境因子
Environmental variables
R2 p
海拔 Elevation 0.126 7 0.001***
坡度 Slope 0.028 5 0.001***
坡向 Aspect 0.002 4 0.014*
土壤含水量 Soil water content 0.001 7 0.071
pH 0.002 9 0.059
土壤有机质 Soil organic matter 0.000 7 0.092
土壤全氮 Total nitrogen 0.001 1 0.002**
土壤全磷 Total phosphorus 0.036 4 0.001***
土壤碱解氮 Available nitrogen 0.017 8 0.001***
土壤速效磷 Available phosphorus 0.245 7 0.001***

Table 3

Multiple regression analysis between species richness and environmental variables in the five forest types in subtropical evergreen-deciduous broadleaved mixed forest across two nature reserves in Southwest Hubei, China"

类型1)
Type1)
物种丰富度2)
Species richness2)
环境变量3) Environmental variables3) 参数4) Parameter4)
E S A SWC pH SOM TN TP AN AP AIC p
I ESR -0.26 -1.16 1.11 -46.83 0.020*
DSR -1.55 -32.35 0.329
II ESR 1.26 -4.31 2.54 -0.95 -55.14 0.008*
DSR -55.29 0.007*
III ESR -41.90 0.019*
DSR 7.85 0.29 -0.68 -64.30 0.032*
IV ESR -0.13 4.16 1.96 -11.01 0.021*
DSR -1.98 -24.49 0.053
V ESR -0.67 -0.57 -107.40 0.022*
DSR -2.32 -129.68 0.005*
[1] Aerts R, Chapin FS III (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
[2] Ai XR, Tan XJ (1999). On the population structure of Davidia involucrata in Xingdoushan protected region. Journal of Hubei Institute for Nationalities (Natural Sciences), 17, 12-15. (in Chinese with English abstract)[艾训儒, 谭建锡 (1999). 星斗山自然保护区珙桐种群结构特征研究. 湖北民族学院学报(自然科学版), 17, 12-15.]
[3] An SQ, Zhang JH, Tan JK, Zhu XL, Zhao RL (1998). Review of studies on secondary forests in north subtropics, China.Journal of Wuhan Botanical Research, 16, 268-272. (in Chinese with English abstract)[安树青, 张久海, 谈健康, 朱学雷, 赵儒林 (1998). 中国北亚热带次生森林植被研究述评. 武汉植物学研究, 16, 268-272.]
[4] Antúnez I, Retamosa EC, Villar R (2001). Relative growth rate in phylogenetically related deciduous and evergreen woody species.Oecologia, 128, 172-180.
[5] Bai KD, Jiang DB, Cao KF, Wan XC, Liao DB (2010). Photosynthetic response to seasonal temperature changes in evergreen and deciduous broad-leaved trees in montane forests of Ailao Mountain and Mao’er Mountain.Acta Ecologica Sinica, 30, 905-913. (in Chinese with English abstract)[白坤栋, 蒋得斌, 曹坤芳, 万贤崇, 廖德宝 (2010). 哀牢山和猫儿山中山常绿和落叶阔叶树光合特性对季节温度变化的响应. 生态学报, 30, 905-913.]
[6] Ban JD, Qi GS (1995). A Study of Vegetation of Western Hubei. Press of Huazhong University of Science and Technology, Wuhan. (in Chinese)[班继德, 漆根深 (1995). 鄂西植被研究. 华中理工大学出版社, 武汉.]
[7] Bohlman SA, Adams JB, Smith MO, Peterson DL (1998). Seasonal foliage changes in the Eastern Amazon Basin detected from landsat thematic mapper satellite images.Biotropica, 30, 376-391.
[8] Bongers F, Poorter L, Hawthorne WD, Sheil D (2009). The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.Ecology Letters, 12, 798-805.
[9] Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data.Ecological Monographs, 75, 139-157.
[10] Cao TR, Qi CJ, Yu XL (1997). Studies on species diversity of Fagus lucida communities on the Badagongshan Mountain, Hunan.Chinese Biodiversity, 5(2), 112-120. (in Chinese with English abstract)[曹铁如, 祁承经, 喻勋林 (1997). 湖南八大公山亮叶水青冈群落物种多样性的研究. 生物多样性, 5(2), 112-120.]
[11] Chabot BF, Hicks DJ (1982). The ecology of leaf life spans.Annual Review of Ecology and Systematics, 13, 229-259.
[12] Condit R (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer Science & Business Media, Berlin.
[13] Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071.
[14] de Faria Lopes S, Schiavini I, do Vale VS, do Prado Júnior JA, de Silvério Arantes C (2012). Historical review of studies in seasonal semideciduous forests in Brazil: A perspective for conservation.Brazilian Geographical Journal: Geosciences and Humanities Research Medium, 3, 21-40.
[15] Ding Y, Zang RG (2008). Changes in deciduous trees during recovery of tropical lowland rain forests on abandoned shifting cultivation lands in Hainan Island, South China.Biodiversity Science, 16, 103-109. (in Chinese with English abstract)[丁易, 臧润国 (2008). 海南岛热带低地雨林刀耕火种弃耕地恢复过程中落叶树种的变化. 生物多样性, 16, 103-109.]
[16] Fang JY (2001). Re-discussion about the forest vegetation zonation in eastern China.Acta Botanica Sinica, 43, 522-533. (in Chinese with English abstract)[方精云 (2001). 也论我国东部植被带的划分. 植物学报, 43, 522-533.]
[17] Fang YP, Liu SX (2006). Research on the national protected plants in Xingdoushan Nature Reserve in Hubei Province.Subtropical Plant Science, 34(3), 48-52. (in Chinese with English abstract)[方元平, 刘胜祥 (2006). 湖北星斗山自然保护区国家重点保护野生植物调查研究. 亚热带植物科学, 34(3), 48-52.]
[18] Fu SX (2002). Flora of Hubeiensis. Hubei Science and Technology Press, Wuhan. (in Chinese)[傅书遐 (2002). 湖北植物志. 湖北科学技术出版社, 武汉.]
[19] Ge JW, Hu HX, Li B (2009). Scientific Survey and Study on Forest Biodiversity in Mulinzi Nature Reserve of Hubei, Central China. Science Press, Beijing. (in Chinese)[葛继稳, 胡鸿兴, 李博 (2009). 湖北木林子自然保护区森林生物多样性研究. 科学出版社, 北京.]
[20] Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems.Proceedings of the National Academy of Sciences of the United States of America, 104, 12942-12947.
[21] Han WH, Li XK, Ye D, Lü SH, Xiang WS, Song TQ, Cao HL (2009). Interspecific association and correlation between dominant woody plant species in an evergreen and deciduous broad-leaved mixed forest of karst area, Northwest Guangxi.Journal of Mountain Science, 27, 719-726. (in Chinese with English abstract)[韩文衡, 李先琨, 叶铎, 吕仕洪, 向悟生, 宋同清, 曹洪麟 (2009). 桂西北喀斯特区常绿落叶阔叶混交林种群种间联结性与相关性. 山地学报, 27, 719-726.]
[22] Hawthorne WD (1996). Holes and the sums of parts in Ghanaian forest: Regeneration, scale and sustainable use. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 104, 75-176.
[23] Kloeppel BD, Gower ST, Vogel JG, Reich PB (2000). Leaf- level resource use for evergreen and deciduous conifers along a resource availability gradient.Functional Ecology, 14, 281-292.
[24] Lai JS, Mi XC, Ren HB, Ma KP (2010). Numerical classification of associations in subtropical evergreen broad-leaved forest based on multivariate regression trees—a case study of 24 hm2 Gutianshan forest plot in China.Chinese Journal of Plant Ecology, 34, 761-769. (in Chinese with English abstract)[赖江山, 米湘成, 任海保, 马克平 (2010). 基于多元回归树的常绿阔叶林群丛数量分类——以古田山24公顷森林样地为例. 植物生态学报, 34, 761-769.]
[25] Lechowicz MJ (1984). Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities.The American Naturalist, 124, 821-842.
[26] Lian KM, Wu YJ, Zhang L, Zhao LL, Zhang F (2015). Numerical classification and ordination of wild Castanea mollissima communities in Taikuan River Nature Reserve, Shanxi.Chinese Journal of Ecology, 34, 33-39. (in Chinese with English abstract)[廉凯敏, 吴应建, 张丽, 赵璐璐, 张峰 (2015). 太宽河自然保护区板栗群落数量分类与排序. 生态学杂志, 34, 33-39.]
[27] Lichstein JW (2007). Multiple regression on distance matrices: A multivariate spatial analysis tool.Plant Ecology, 188, 117-131.
[28] Liu HB, Wang QG, Lu JM, Xu YZ, Lu ZJ, Qiao XJ, Bao DC, Guo YL, Meng HJ, Jiang MX (2014). Root-sprouting ability in an evergreen and deciduous broad-leaved mixed forest.Chinese Science Bulletin, 59, 3491-3498. (in Chinese)[刘海波, 王庆刚, 路俊盟, 徐耀粘, 卢志军, 乔秀娟, 鲍大川, 郭屹立, 孟红杰, 江明喜 (2014). 八大公山常绿落叶阔叶混交林根萌能力. 科学通报, 59, 3491-3498.]
[29] Liu HJ, Guo K (2003). Classification and ordination analysis of plant communities in inter-dune lowland in Hunshandak Sandy Land.Acta Ecologica Sinica, 23, 2163-2169. (in Chinese with English abstract)[刘海江, 郭柯 (2003). 浑善达克沙地丘间低地植物群落的分类与排序. 生态学报, 23, 2163-2169.]
[30] Liu WD, Ding Y, Zang RG, Su JR, Yang M, Cai DL, Li RC, Chen SW (2010). Quantitative classification and ordination of low-altitudinal tropical forests in Bawangling, Hainan Island.Chinese Journal of Ecology, 29, 1526-1532. (in Chinese with English abstract)[刘万德, 丁易, 臧润国, 苏建荣, 杨民, 蔡笃磊, 李儒财, 陈少伟 (2010). 海南岛霸王岭林区低海拔热带林群落数量分类与排序. 生态学杂志, 29, 1526-1532.]
[31] Lomolino MV (2001). Elevation gradients of species-density: Historical and prospective views.Global Ecology and Biogeography, 10, 3-13.
[32] Lu SF, Liu SX, Fang YP (2005). A preliminary research of invasive species around Xingdoushan National Nature Reserve, Hubei.Journal of Huanggang Normal University, 25(3), 48-52. (in Chinese with English abstract)[卢少飞, 刘胜祥, 方元平 (2005). 星斗山国家级自然保护区外来入侵植物初步研究. 黄冈师范学院学报, 25(3), 48-52.]
[33] Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010). Introduction: Elevation gradients in the tropics: Laboratories for ecosystem ecology and global change research.Global Change Biology, 16, 3171-3175.
[34] Mueller KE, Hobbie SE, Oleksyn J, Reich PB, Eissenstat DM (2012). Do evergreen and deciduous trees have different effects on net N mineralization in soil.Ecology, 93, 1463-1472.
[35] Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008). Scale effects and human impact on the elevational species richness gradients.Nature, 453, 216-219.
[36] Oliveira-Filho AT, Jarenkow JA, Rodal MJN (2006). Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington RT, Ratter JA eds. Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation. CRC Press, Boca Raton, USA. 151-184.
[37] Ozinga WA, Schaminée JHJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendael JM (2005). Predictability of plant species composition from environmental conditions is constrained by dispersal limitation.Oikos, 108, 555-561.
[38] Poorter L, Markesteijn L (2008). Seedling traits determine drought tolerance of tropical tree species.Biotropica, 40, 321-331.
[39] Quigley MF, Platt WJ (2003). Composition and structure of seasonally deciduous forests in the Americas.Ecological Monographs, 73, 87-106.
[40] Reich PB, Bakken P, Carlson D, Frelich LE, Friedman SK, Grigal DF (2001). Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests.Ecology, 82, 2731-2748.
[41] Reich PB, Uhl C, Walters MB, Prugh L, Ellsworth DS (2004). Leaf demography and phenology in Amazonian rain forest: A census of 40000 leaves of 23 tree species.Ecological Monographs, 74, 3-23.
[42] Shen ZH, Zhao ZE, Wu JQ, Jin YX, Huang HD, Jiang MX (1999). Spatial pattern and relation with the topographical factors of the rare pare species at Dalaoling in the Three Gorges Region.Acta Phytoecologica Sinica, 23, 171-180. (in Chinese with English abstract)[沈泽昊, 赵子恩, 吴金清, 金义兴, 黄汉东, 江明喜 (1999). 三峡地区大老岭珍稀植物的分布格局及其与地形因子的关系. 植物生态学报, 23, 171-180.]
[43] Shen ZH, Fang JY (2001). Niche comparison of two Fagus species based on the topographic patterns of their populations. Acta Phytoecologica Sinica, 25, 392-398. (in Chinese with English abstract)[沈泽昊, 方精云 (2001). 基于种群分布地形格局的两种水青冈生态位比较研究. 植物生态学报, 25, 392-398.]
[44] Song K (2012). Vegetation Characteristic of Evergreen- deciduous Broadleaved Forest Ecotone and Its Formation Mechanism, a Study in Anhui. PhD dissertation, East China Normal University, Shanghai. 50-60. (in Chinese with English abstract).[宋坤 (2012). 安徽常绿阔叶林-落叶阔叶林交错带的森林植被特征及其成因. 博士学位论文, 华东师范大学, 上海. 50-60.]
[45] Song YC (1999). Perspective of the vegetation zonation of forest region in eastern China.Acta Botanica Sinica, 41, 541-552. (in Chinese with English abstract)[宋永昌 (1999). 中国东部森林植被带划分之我见. 植物学报, 41, 541-552.]
[46] Song YC (2004). Tentative classification scheme of evergreen broad-leaved forests of China.Acta Phytoecologica Sinica, 28, 435-448. (in Chinese with English abstract)[宋永昌 (2004). 中国常绿阔叶林分类试行方案. 植物生态学报, 28, 435-448.]
[47] Sun J, Li XZ, Hu YM, Wang XW, Lü JJ, Li ZM, Chen HW (2009). Classification, species diversity, and species distribution gradient of permafrost wetland plant communities in Great Xing’an Mountains valleys of Northeast China.Chinese Journal of Applied Ecology, 20, 2049-2056. (in Chinese with English abstract)[孙菊, 李秀珍, 胡远满, 王宪伟, 吕久俊, 李宗梅, 陈宏伟 (2009). 大兴安岭沟谷冻土湿地植物群落分类、物种多样性和物种分布梯度. 应用生态学报, 20, 2049-2056.]
[48] Tang JM, Dai HH, Xun JG, Zhai MP (2010). Effects on regeneration pattern for woodland fertility of mixed evergreen and deciduous broadleaved mountain forests.Hubei Forestry Science and Technology, (6), 7-10. (in Chinese with English abstract)[汤景明, 戴汉会, 荀继刚, 翟明普 (2010). 山地常绿落叶阔叶混交林更新方式对林地肥力的影响. 湖北林业科技, (6), 7-10.]
[49] Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Bongers F (2011). Climate and soil drive forest structure in Bolivian lowland forests.Journal of Tropical Ecology, 27, 333-345.
[50] Wang ZX, Lei Y, Fujiwara K, Liu LH, Xue YG (2006). Community classification, species composition, and regeneration of Fagus lucida forests in subtropical mountains, China.Biodiversity Science, 14, 29-40. (in Chinese with English abstract)[汪正祥, 雷耘, Fujiwara K, 刘林翰, 薛跃规 (2006). 亚热带山地亮叶水青冈林的群落分类及物种组成与更新. 生物多样性, 14, 29-40.]
[51] Williams LJ, Bunyavejchewin S, Baker PJ (2008). Deciduousness in a seasonal tropical forest in western Thailand: Interannual and intraspecific variation in timing, duration and environmental cues.Oecologia, 155, 571-582.
[52] Woodward FI (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge, UK.
[53] Wu ZL (2000). Forest of China. China Forestry Publishing House, Beijing. (in Chinese)[吴中伦 (2000). 中国森林. 中国林业出版社, 北京.]
[54] Wu ZY (1980). Chinese Vegetation. Science Press, Beijing. 279-306. (in Chinese)[吴征镒 (1980). 中国植被. 科学出版社, 北京. 279-306.]
[55] Wyka TP, Oleksyn J (2014). Photosynthetic ecophysiology of evergreen leaves in the woody angiosperms—A review.Dendrobiology, 72, 3-27.
[56] Xiong XG, Xiong GM, Xie ZQ (2002). The regeneration of tree species in the mixed evergreen-deciduous broad-leaved forests in the Shennongjia Mountains, Hubei Province.Acta Ecologica Sinica, 22, 2001-2005. (in Chinese with English abstract)[熊小刚, 熊高明, 谢宗强 (2002). 神农架地区常绿落叶阔叶混交林树种更新研究. 生态学报, 22, 2001-2005.]
[57] Yuan X, Ma KM, Wang D (2013). Optimal number of herb vegetation clusters: A case study on Yellow River Delta.Acta Ecologica Sinica, 33, 2514-2521. (in Chinese with English abstract)[袁秀, 马克明, 王德 (2013). 草地植物群落最优分类数的确定——以黄河三角洲为例. 生态学报, 33, 2514-2521.]
[58] Zhang JT (1995). Quantitative Vegetation Ecology. Science and Technology Press of China, Beijing. (in Chinese)[张金屯 (1995). 植被数量生态学方法. 中国科学技术出版社, 北京.]
[59] Zhang M, Xiong GM, Xie ZQ (2004). Ecological investigation of the mixed broad leaved deciduous and evergreen forest in Three Gorges Reservoir Area.Resources and Environment in the Yangtze Basin, 13, 168-173. (in Chinese with English abstract)[张谧, 熊高明, 谢宗强 (2004). 三峡库区常绿落叶阔叶混交林的监测研究. 长江流域资源与环境, 13, 168-173.]
[60] Zhao LJ, Xiang WH, Li JX, Deng XW, Liu C (2013). Floristic composition, structure and phytogeographic characteristics in a Lithocarpus glaber-Cyclobalanopsis glauca forest community in the subtropical region.Scientia Silvae Sinicae, 49(12), 10-17. (in Chinese with English abstract)[赵丽娟, 项文化, 李家湘, 邓湘雯, 刘聪 (2013). 中亚热带石栎-青冈群落物种组成、结构及区系特征. 林业科学, 49(12), 10-17.]
[61] Zhou GY (1996). The deciduous broad-leaved forest of China—Also discussing about the belonging of the evergreen mixed deciduous broad-leaved forest.Journal of Ningbo University, 9(3), 93-102. (in Chinese with English abstract)[周光裕 (1996). 中国的落叶阔叶林——兼论常绿落叶阔叶混交林的归属问题. 宁波大学学报, 9(3), 93-102.]
[1] Wen-Qiang XU, Liao YANG, Xi CHEN, Ya-Qi GAO, Lei WANG. Carbon storage, spatial distribution and the influence factors in Tianshan forests [J]. Chinese Journal of Plant Ecology, 2016, 40(4): 364-373.
[2] Hua JU, Guo-Zhen SHEN, Ming-Zhe MA, Jie-Lin GE, Wen-Ting XU, Chang-Ming ZHAO, Qiu- Liang ZHANG. Greenhouse gas fluxes of typical northern subtropical forest soils: Impacts of land use change and reduced precipitation [J]. Chinese Journal of Plant Ecology, 2016, 40(10): 1049-1063.
[3] Li-Ping TAN, Su-Xia LIU, Xing-Guo MO, Li-Hu YANG, Zhong-Hui LIN. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China [J]. Chinese Journal of Plant Ecology, 2015, 39(8): 773-784.
[4] ZHANG Peng, LI Xin-Rong, JIA Rong-Liang, HU Yi-Gang, and HUANG Lei. Nitrogenase activity of biological soil crusts and its response to hydrothermic factors in the Shapotou region of northern China [J]. CJPE, 2011, 35(9): 906-913.
[5] LI Shan-Jia, ZHANG You-Fu, CHEN Tuo. Relationships between foliar stable carbon isotope composition and environmental factors and leaf element contents of Pinus tabulaeformis in northwestern China [J]. CJPE, 2011, 35(6): 596-604.
[6] HUANG Jian-Xiong, ZHENG Feng-Ying, MI Xiang-Cheng. Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China [J]. Chinese Journal of Plant Ecology, 2010, 34(3): 309-315.
[7] BU Ren-Cang, CHANG Yu, HU Yuan-Man, LI Xiu-Zhen, HE Hong-Shi. SENSITIVITY OF CONIFEROUS TREES TO ENVIRONMENTAL FACTORS AT DIFFERENT SCALES IN THE SMALL XING’AN MOUNTAINS, CHINA [J]. Chinese Journal of Plant Ecology, 2008, 32(1): 80-87.
[8] LIU Wei, ZHU Li, SANG Wei-Guo. POTENTIAL GLOBAL GEOGRAPHICAL DISTRIBUTION OF AMARANTHUS RETROFLEXUS [J]. Chinese Journal of Plant Ecology, 2007, 31(5): 834-841.
[9] LUAN Qing-Shan, SUN Jun, SONG Shu-Qun, SHEN Zhi-Liang, YU Zhi-Ming. CANONICAL CORRESPONDENCE ANALYSIS OF SUMMER PHYTOPLANKTON COMMUNITY AND ITS ENVIRONMENT IN THE YANGTZE RIVER ESTUARY, CHINA [J]. Chinese Journal of Plant Ecology, 2007, 31(3): 445-450.
[10] WANG Juan, NI Jian. REVIEW OF MODELLING THE DISTRIBUTION OF PLANT SPECIES [J]. Chinese Journal of Plant Ecology, 2006, 30(6): 1040-1053.
[11] LIU Wen-Yao, MA Wen-Zhang, YANG Li-Pan,. ADVANCES IN ECOLOGICAL STUDIES ON EPIPHYTES IN FOREST CANOPIES [J]. Chinese Journal of Plant Ecology, 2006, 30(3): 522-533.
[12] LIU Qiu-Feng, KANG Mu-Yi, LIU Quan-Ru. QUANTITATIVE CLASSIFICATION AND ENVIRONMENTAL INTERPRETATION OF FOREST TREE SPECIES IN HUNGOU, ZHONGTIAO MOUNTAIN [J]. Chinese Journal of Plant Ecology, 2006, 30(3): 383-391.
[13] LIU Qi-Jing, HU Li-Le, LI Xuan-Ran. PLANT DIVERSITY IN QIANYANZHOU AFTER 20 YEARS OF SMALL WATERSHED TREATMENT [J]. Chinese Journal of Plant Ecology, 2005, 29(5): 766-774.
[14] ZHANC Feng, ZHANC Jin-Tun, Shangguan Tie-Liang. PLANT DIVERSITY OF FOREST COMMUNITY IN ZHUWEIGOU OF LISHAN MOUNTAIN NATURE RESERVE [J]. Chinese Journal of Plant Ecology, 2002, 26(增刊): 46-51.
[15] WANG Yu-Hui. Analysis and Quantitative Simulation of Stomatal Conductance of Aneurolepidium chinense [J]. Chinese Journal of Plant Ecology, 2000, 24(6): 739-743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Fan Xu;Pengli Li;Baoyan An;Lingling Yuan;Tao Meng;Huiqin Yue;Ningning Wang*. Analysis of Transgenic Plants Expressing Soybean Receptor-like Kinase GmSARK Driven by an Inducible Promoter[J]. , 2010, 45(02): 149 -156 .
[2] Yuan Jiang, Shuli Fan, Meizhen Song, Jianing Yu, Shuxun Yu. Identification and Analysis of RNA Editing Sites in Chloroplast Transcripts of Gossypium hirsutum[J]. , 2011, 46(4): 386 -395 .
[3] Kaijian Lei, Jing Ren, Yuanyuan Zhu, Guoyong An. SPL1 is Involved in the Regulation of Rhizosphere Acidification Reaction Under Low Phosphate Condition in Arabidopsis[J]. Bulletin of Botany, 2016, 51(2): 184 -193 .
[4] Liu Tao, Chen Haiying, Yu Haiying, Li Tingxuan, Gao Shangqing, Chen Guangdeng. Characterization of Phosphorus Utilization in Barley Leaf under Low Phosphorus Stress[J]. Chin Bull Bot, 2016, 51(4): 504 -514 .
[5] . Effects of Grape F1 Generation Hybrid Plants on photosystem activity Under Alkaline Salt Tolerance(Revised Manuscript)[J]. , 2018, 53(2): 0 .
[6] Hong FeiWANG Qing MaoSHANG. The Molecular Mechanisms on Angiosperm Hypocotyl Elongation[J]. , 2018, 53(2): 0 .
[7] Wei Qi, Zeng Rensen, Kong Chuihua, Luo Shiming, Zeng Qiang, Tan Huifen. The Isolation and Identification of Allelochemicals From Aerial Parts of Tropic Ageratum[J]. Chinese Journal of Plant Ecology, 1997, 21(4): 360 -366 .
[8] Zhuang Shuhong, Wang Keming, Chen Lixue. Preliminary Study on the Ecological Characteristics in Sunny ND shady Slopes of Seminatural Vegetation of Laoyangfen in Kunyu Mountain[J]. Chinese Journal of Plant Ecology, 1999, 23(3): 238 -249 .
[9] Jiang Youxu. Ecological Analysis of Flora, Species Correlation and Ordination of Subalpine Forest Vegetation in Western Sichuan[J]. Chinese Journal of Plant Ecology, 1982, 6(4): 281 -301 .
[10] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chinese Journal of Plant Ecology, 2003, 27(3): 412 -426 .