Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (6): 574-584.doi: 10.17521/cjpe.2015.0467

• Research Articles • Previous Articles     Next Articles

Improving the accuracy of indirect methods in estimating leaf area index using three correction schemes in a Larix gmelinii plantation

Ming ZHOU1,2, Zhi-Li LIU1, Guang-Ze JIN1,*()   

  1. 1Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
    and
    2Forestry Bureau of Jiamusi, Jiamusi, Heilongjiang 154007, China
  • Received:2015-12-21 Accepted:2016-05-09 Online:2016-06-15 Published:2016-06-30
  • Contact: Guang-Ze JIN E-mail:taxus@126.com

Abstract:

Aims Woody materials and clumping effects are key error sources in estimating leaf area index (LAI) by optical methods. However, how to correct the error caused by woody materials has not reached consensus. The aims of this study are (1) to evaluate the accuracy of optical methods for estimating effective LAI (Le) in a deciduous needle leaf forest stand, and (2) to develop a practical correction scheme to improve the accuracy of optical methods in estimating LAI.Methods Lewas estimated by two indirect methods (i.e., digital hemispherical photography (DHP) and LAI-2000 plant canopy analyzer method (LAI-2000 method) in an annual maximum leaf area period in a Larix gmelinii plantation. Then, we developed three correction schemes to improve the accuracy of indirect methods in estimating LAI. Meanwhile, two direct methods (i.e., litter collection and allometry methods) were used to estimate LAI. Taking LAI from litter collection as a reference, we evaluated the effectiveness of three correction schemes and tested the influence of zenith angle ranges on the correction results.Important findings With zenith angle ranges of 0-45° (rings 1-3), 0-60° (rings 1-4), 45°-60° (ring 4) and 0-75° (rings 1-5), Leobtained from DHP underestimated LAI from both litter collection and allometry by 19%-32% and 18%-29%, respectively. Lefrom LAI-2000 method with four zenith angles also underestimated LAI from both litter collection and allometry by 9%-30% and 8%-28%, respectively. Although the contribution of woody materials to LAI was overestimated in correction scheme A, it was effective in correcting Lefrom DHP with zenith angles of 45º-60º (ring 4), and also effective for Lefrom LAI-2000 method with zenith angles of rings both 1-3 and 1-4. Correction scheme B was all effective in correcting Lefrom DHP with four zenith angle ranges. Generally, correction scheme C was more effective than other two schemes in correcting Lefrom both DHP and LAI-2000 method with four zenith angle ranges. These results indicate that the zenith angle range is a key factor for determining the accuracy of optical methods in estimating LAI besides woody materials and clumping effects.

Key words: leaf area index, litter collection, allometry, digital hemispherical photography, LAI-2000 plant canopy analyzer method, zenith angle

Table 1

Composition of major species, allometric equations and specific leaf area for major species in the Larix gmelinii plantation"

主要树种
Dominant species
密度
Stem density
(individuals·hm-2)
平均胸径
Mean
DBH (cm)
胸高断面积
Basal area
(m2·hm-2)
相对优势度
Relative
dominance (%)
比叶面积1)
SLA1)
(cm2·g-1)
叶生物量方程2)
Allometric equations for leaf biomass2)
Bleaf = aDBHb
a b
兴安落叶松 Larix gmelinii 350 28.93 24.29 84.49 134.23 0.014 3.934
水曲柳 Fraxinus mandshurica 156 9.50 2.15 7.47 338.36 8.570 2.180
色木槭 Acer mono 294 5.81 1.01 3.50 305.04 17.179 1.948
紫椴 Tilia amurensis 239 5.62 0.72 2.50 243.59 1.694 2.507
其他 Others 261 4.92 0.59 2.05 - - -
总计 Total 1 300 13.25 28.75 100.00 - - -

Fig. 1

Seasonal changes of total leaf litter dry mass in litter traps in the Larix gmelinii plantation (mean ± SE)."

Table 2

Correction parameters and its ecological characteristics for woody materials and clumping effects (clumping effects both beyond and within shoots) in three correction schemes in the Larix gmelinii plantation"

校正方案
Correction scheme
校正公式
Correction equation
木质部
Woody materials
冠层水平上的集聚效应
Clumping effects beyond shoots
簇内水平上的集聚效应
Clumping effects within shoots
生态学特性
Ecological characteristics
校正方案A Correction scheme A LAI = LeγE /ΩE - WAI WAI, 通过光学仪器法在无叶期测定
WAI, which was measured by optical methods in leafless periods
ΩE, 基于Chen和Cihlar (1995)提出的CC法, 通过DHP-TRAC软件获得, 计算时选择40°-45°天顶角
ΩE, which was obtained through DHP-TRAC software based on CC method developed by Chen and Cihlar (1995), with zenith angles of 40°-45°
γE, 测定兴安落叶松的γE, 然后根据小样方内兴安落叶松和其他阔叶树种的胸高断面积进行加权, 得到各样点林分水平上
γE
γE, γE for Larix gmelinii was first measured, and the γE for the stand was obtained by weighting γE for Larix gmelinii and other broadleaf species based on the basal area
未考虑木质部对LAI贡献率的季节变异, 且过度校正了木质部的集聚效应
Ignoring seasonal variations of the contribution of woody materials to LAI, and overestimated the clumping effects of woody materials
校正方案B Correction scheme B LAI = LeγE /ΩE - SAI SAI, 利用WAI乘以SAIWAI的比例获得, 比例值为0.2 (Liu et al., 2015b)
SAI, which was calculated by multiplying WAI by the ratio of SAI to WAI. The ratio was 0.2 (Liu et al., 2015b)
同校正方案A
Same as correction scheme A
同校正方案A
Same as correction scheme A
一定程度上校正了木质部对LAI贡献率的季节变异, 过度校正了木质部的集聚效应
Slightly correcting seasonal variations of the contribution of woody materials to LAI, but also overestimated the clumping effects of woody materials
校正方案C Correction scheme C
αstem, 用SAI除以Le
获得
αstem, which was calculated by SAI divided by Le
同校正方案A
Same as correction scheme A
同校正方案A
Same as correction scheme A
合理校正了木质部对LAI的贡献率, 避免过度校正木质部的集聚效应
Reasonably correcting seasonal variations of the contribution of woody materials to LAI, and avoid over estimating the clump- ing effects of woody materials

Fig. 2

Comparison of leaf area index (LAI) from litter collec- tion and allometry (mean ± SD). Different lowercase letters for the same species indicated a significant difference among LAI from litter collection and allometry at the 0.05 level. Am, Acer mono; Fm, Fraxinus mandschurica; Lg, Larix gmelinii; Ta, Tilia amurensis."

Table 3

Comparison of effective leaf area index (Le) from digital hemispherical photography (DHP) and LAI-2000 plant canopy analyzer method (LAI-2000 method) with different zenith angles and differences between these values and leaf area index (LAI) from direct methods (litter collection and allometry)"

数值 Value 0-45º
(1-3环 Rings 1-3)
0-60º
(1-4环 Ring 1-4)
45º-60º
(4环 Ring 4)
0-75º
(1-5环 Rings 1-5)
DHP LAI-2000法
LAI-2000 method
DHP LAI-2000法
LAI-2000 method
DHP LAI-2000法
LAI-2000 method
DHP LAI-2000法
LAI-2000 method
最大值 Maximum 4.25 7.03 4.27 5.87 5.25 5.83 4.39 5.83
最小值 Minimum 3.03 2.96 3.4 2.54 3.13 2.20 3.44 2.45
平均值 Mean 3.72c 4.96A 3.89bc 4.42AB 4.33a 3.80B 4.04b 4.11B
标准偏差 Standard deviation 0.31 1.18 0.2 1.07 0.58 1.15 0.28 0.98
与凋落物法LAI的差异
Difference with LAI from litter collection (%)
32 9 28 18 19 30 25 24
与异速生长方程法LAI的差异
Difference with LAI from allometry (%)
29 8 26 17 18 28 23 24

Table 4

Stem-to-total area ratio (αstem) within different zenith angles, clumping index (ΩE) and needle-to-shoot area ratio (γE) in the Larix gmelinii plantation"

数值
Value
树干比例 astem (%) 集聚指数
ΩE
针簇比
γE
0-45º
(1-3环 Rings 1-3)
0-60º
(1-4环 Ring 1-4)
45º-60º
(4环 Ring 4)
0-75º
(1-5环 Rings 1-5)
DHP LAI-2000法
LAI-2000 method
DHP LAI-2000法
LAI-2000 method
DHP LAI-2000法
LAI-2000 method
DHP LAI-2000法
LAI-2000 method
最大值 Maximum 11 11 9 13 9 17 8 13 0.91 1.79
最小值 Minimum 6 5 7 5 6 6 7 6 0.84 1.03
平均值 Mean 8 7 8 8 7 10 7 9 0.89 1.33
标准偏差 Standard deviation 1 2 1 3 1 3 1 3 0.02 0.18
变异系数 Coefficient of variation (%) 13 32 10 31 14 34 7 32 3 15

Fig. 3

Effective leaf area index (LAI) after corrected by different correction schemes within different zenith angles for digital hemispherical photography (DHP) and LAI-2000 plant canopy analyzer method (LAI-2000 method) and LAI from the litter collection method (mean ± SD). Correction scheme A, B and C see Table 2. Different lowercase letters with the same correction scheme meant significant difference among LAI from different methods at the 0.05 level."

1 Behera SK, Srivastava P, Pathre UV, Tuli R (2010). An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 plant canopy analyzer. Agricultural and Forest Meteorology, 150, 307-311.
2 Bréda NJJ (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403-2417.
3 Chen J, Liu J, Cihlar J, Goulden M (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124, 99-119.
4 Chen JM (1996). Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80, 135-163.
5 Chen JM, Black TA (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15, 421-429.
6 Chen JM, Cihlar J (1995). Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Applied Optics, 34, 6211-6222.
7 Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006). Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140, 257-268.
8 Chen JM, Rich PM, Gower ST, Norman JM, Plummer S (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research, 102, 29429-29443.
9 Chen X, Sang WG (2007). Dynamics of leaf area index and canopy openness for three forest communities in the warm temperate zone of China. Journal of Plant Ecology (Chinese Version), 31, 431-436. (in Chinese with English abstract)[陈厦, 桑卫国 (2007). 暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态. 植物生态学报, 31, 431-436.]
10 Cutini A, Matteucci G, Mugnozza G (1998). Estimation of leaf area index with the LI-COR LAI 2000 in deciduous forests. Forest Ecology and Management, 105, 55-65.
11 Dufrêne E, Bréda N (1995). Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia, 104, 156-162.
12 Editorial Board of Forest in China(1997) . Forest in China. Vol. 2. China Forestry Publishing House, Beijing. 592-607. (in Chinese)[中国森林编辑委员会 (1997). 中国森林第二卷. 中国林业出版社, 北京. 592-607.]
13 Eriksson H, Eklundh L, Hall K, Lindroth A (2005). Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 129, 27-37.
14 Fang H, Li W, Wei S, Jiang C (2014). Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agricultural and Forest Meteorology, 198-199, 126-141.
15 Galia Selaya N, Oomen RJ, Netten JJ, Werger MJ, Anten NP (2008). Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology, 96, 1211-1221.
16 Gower ST, Norman JM (1991). Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology, 72, 1896-1900.
17 Gower ST, Reich PB, Son Y (1993). Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 12, 327-345.
18 Hao J, Xiong W, Wang YH, Yu PT, Liu YH, Xu LH, Wang YH, Zhang XB (2012). The comparison and dynamic calibration between the LAI values of a Larix principis-rupprechtii plantation determined by canopy scanner and littr-fall collection.Forest Research, 25, 231-235. (in Chinese with English abstract)[郝佳, 熊伟, 王彦辉, 于澎涛, 刘延惠, 徐丽宏, 王轶浩, 张晓蓓 (2012). 华北落叶松人工林叶面积指数实测值与冠层分析仪读数值的比较和动态校正. 林业科学研究, 25, 231-235.]
19 Ishihara MI, Hiura T (2011). Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest.Agricultural and Forest Meteorology, 151, 1016-1022.
20 Jonckheere I, Muys B, Coppin P (2005). Allometry and evaluation of in situ optical LAI determination in Scots pine: A case study in Belgium. Tree Physiology, 25, 723-732.
21 Kucharik CJ, Norman JM, Gower ST (1998). Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 91, 69-88.
22 Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129, 187-207.
23 Liu ZL, Chen JM, Jin GZ, Qi YJ (2015a). Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agricultural and Forest Meteorology, 209, 36-48.
24 Liu ZL, Jin GZ (2014). Estimation of seasonal changes in leaf area index based on optical methods in spruce-fir valley forest.Chinese Journal of Applied Ecology, 25, 3420-3428. (in Chinese with English abstract)[刘志理, 金光泽 (2014). 基于光学仪器法测定谷地云冷杉林叶面积指数的季节变化. 应用生态学报, 25, 3420-3428.]
25 Liu ZL, Jin GZ (2015). Using litter collection and tree data to model leaf area index in the mixed broadleaved-Korean pine forest in the Xiaoxing’an Mountains, China.Acta Ecologica Sinica, 35, 3190-3198. (in Chinese with English abstract)[刘志理, 金光泽 (2015). 利用凋落物法和林木因子模拟小兴安岭阔叶红松林叶面积指数. 生态学报, 35, 3190-3198.]
26 Liu ZL, Jin GZ, Chen JM, Qi YJ (2015b). Evaluating optical measurements of leaf area index against litter collection in a mixed broadleaved-Korean pine forest in China. Trees- Structure and Function, 29, 59-73.
27 Liu ZL, Jin GZ, Zhou M (2014). Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods.Chinese Journal of Plant Ecology, 38, 843-856. (in Chinese with English abstract)[刘志理, 金光泽, 周明 (2014). 利用直接法和间接法测定针阔混交林叶面积指数的季节动态. 植物生态学报, 38, 843-856.]
28 Liu ZL, Wang XC, Chen JM, Wang CK, Jin GZ (2015c). On improving the accuracy of digital hemispherical photography measurements of seasonal leaf area index variation in deciduous broadleaf forests. Canadian Journal of Forest Research, 45, 721-731.
29 Luo TX, Pan YD, Ouyang H, Shi PL, Luo J, Yu ZL, Lu Q (2004). Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography, 13, 345-358.
30 Ma ZQ, Liu QJ, Zeng HQ, Li XR, Chen YR, Lin YM, Zhang SH, Yang FT, Wang HQ (2008). Estimation of leaf area index of planted forests in subtropical China by photogrammetry.Acta Ecologica Sinica, 28, 1971-1980. (in Chinese with English abstract)[马泽清, 刘琪璟, 曾慧卿, 李轩然, 陈永瑞, 林耀明, 张时煌, 杨风亭, 汪宏清 (2008). 南方人工林叶面积指数的摄影测量. 生态学报, 28, 1971-1980.]
31 Macfarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M (2007). Estimation of leaf area index in eucalypt forest using digital photography. Agricultural and Forest Meteorology, 143, 176-188.
32 Maseyk KS, Lin T, Rotenberg E, Grünzweig JM, Schwartz A, Yakir D (2008). Physiology-phenology interactions in a productive semi-arid pine forest. New Phytologist, 178, 603-616.
33 Mason EG, Diepstraten M, Pinjuv GL, Lasserre J-P (2012). Comparison of direct and indirect leaf area index measurements of Pinus radiata D. Don. Agricultural and Forest Meteorology, 166-167, 113-119.
34 Nasahara KN, Muraoka H, Nagai S, Mikami H (2008). Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agricultural and Forest Meteorology, 148, 1136-1146.
35 Ren H, Peng SL (1997). Comparison of methods of estmation leaf area index in Dinghushan forests.Acta Ecologica Sinica, 17, 220-223. (in Chinese with English abstract)[任海, 彭少麟 (1997). 鼎湖山森林群落的几种叶面积指数测定方法的比较. 生态学报, 17, 220-223.]
36 Richardson AD, Dail DB, Hollinger DY (2011). Leaf area index uncertainty estimates for model-data fusion applications. Agricultural and Forest Meteorology, 151, 1287-1292.
37 Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002). Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology, 112, 203-215.
38 Su HX, Bai F, Li GQ (2012). Seasonal dynamics in leaf area index in three typical temperate montane forests of China: A comparison of multi-observation methods.Chinese Journal of Plant Ecology, 36, 231-242. (in Chinese with English abstract)[苏宏新, 白帆, 李广起 (2012). 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较. 植物生态学报, 36, 231-242.]
39 Thimonier A, Sedivy I, Schleppi P (2010). Estimating leaf area index in different types of mature forest stands in Switzerland: A comparison of methods. European Journal of Forest Research, 129, 543-562.
40 Walter J-MN, Jonckheere I (2010). Image analysis of hemispherical photographs: Algorithms and calculations. In: Fournier RA, Hall RJ eds. Hemispherical Photography for Forestry: Theory, Methods, Applications. Kluwer, Alphen aan den Rijn, Netherlands .
41 Wang BQ, Liu ZL, Qi YJ, Jin GZ (2014). Seasonal dynamics of leaf area index using different methods in the Korean pine plantation.Acta Ecologica Sinica, 34, 1956-1964. (in Chinese with English abstract)[王宝琦, 刘志理, 戚玉娇, 金光泽 (2014). 利用不同方法测定红松人工林叶面积指数的季节动态. 生态学报, 34, 1956-1964.]
42 Wang C (2006). Biomass allometric equations for 10 co- occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9-16.
43 Zeng XP, Zhao P, Rao XQ, Cai XA (2008). Measurement of leaf area index of three plantations and their seasonal changes in Heshan hilly land.Journal of Beijing Forestry University, 30(5), 33-38. (in Chinese with English abstract)[曾小平, 赵平, 饶兴权, 蔡锡安 (2008). 鹤山丘陵3种人工林叶面积指数的测定及其季节变化. 北京林业大学学报, 30(5), 33-38.]
44 Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB (2014). Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sensing of Environment, 151, 44-56.
45 Zhang Y, Chen JM, Miller JR (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology, 133, 166-181.
46 Zou J, Yan G, Zhu L, Zhang W (2009). Woody-to-total area ratio determination with a multispectral canopy imager. Tree Physiology, 29, 1069-1080.
47 Zou J, Yan GJ (2010). Optical methods for in situ measuring leaf area index of forest canopy: A review.Chinese Journal of Applied Ecology, 21, 2971-2979. (in Chinese with English abstract)[邹杰, 阎广建 (2010). 森林冠层地面叶面积指数光学测量方法研究进展. 应用生态学报, 21, 2971-2979.]
[1] YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351.
[2] Liu Qiang, Cai Erli, Zhang Jialin, Song Qiao, Li Xiuhong, Dou Baocheng. A Modification of the Finite-length Averaging Method in Measuring Leaf Area Index in Field [J]. Chin Bull Bot, 2018, 53(5): 671-685.
[3] Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plan Ecolo, 2017, 41(7): 749-760.
[4] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538.
[5] GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plan Ecolo, 2017, 41(12): 1273-1288.
[6] Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plan Ecolo, 2017, 41(1): 53-61.
[7] Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense [J]. Chin J Plan Ecolo, 2017, 41(1): 105-114.
[8] Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China [J]. Chin J Plan Ecolo, 2016, 40(9): 871-882.
[9] ZHU Xu-Chao, YUAN Guo-Fu, SHAO Ming-An, YI Xiao-Bo, DU Tao. Spatial pattern of riparian vegetation in desert of the lower Tarim River basin [J]. Chin J Plan Ecolo, 2015, 39(11): 1053-1061.
[10] DANG Jing-Jing,ZHAO Cheng-Zhang,LI Yu,HOU Zhao-Jiang,DONG Xiao-Gang. Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China [J]. Chin J Plan Ecolo, 2015, 39(1): 23-31.
[11] LIU Zhi-Li, JIN Guang-Ze, and ZHOU Ming. Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods [J]. Chin J Plan Ecolo, 2014, 38(8): 843-856.
[12] MA Yu-Zhu, CHENG Dong-Liang, ZHONG Quan-Lin, JIN Bing-Jie, LIN Jiang-Ming, LU Hong-Dian, and GUO. Branching and metabolic exponents in seven woody plants [J]. Chin J Plan Ecolo, 2014, 38(6): 599-607.
[13] DANG Jing-Jing, ZHAO Cheng-Zhang, LI Yu, HOU Zhao-Jiang, DONG Xiao-Gang. Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland [J]. Chin J Plan Ecolo, 2014, 38(12): 1307-1314.
[14] MU Shao-Jie, ZHOU Ke-Xin, QI Yang, CHEN Yi-Zhao, FANG Ying, and ZHU Chao. Spatio-temporal patterns of precipitation-use efficiency of vegetation and their controlling factors in Inner Mongolia [J]. Chin J Plan Ecolo, 2014, 38(1): 1-16.
[15] ZHU Qiang-Gen, JIN Ai-Wu, WANG Yi-Kun, QIU Yong-Hua, LI Xue-Tao, and ZHANG Si-Hai. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis [J]. Chin J Plan Ecolo, 2013, 37(9): 811-819.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 91 .
[2] QIAN Ying-Qian. Some Issues in Biodiversity[J]. Chin Bull Bot, 1998, 15(06): 1 -18 .
[3] ZHANG Xiu-Juan MEI Li WANG Zheng-Quan HAN You-Zhi. Advances in Studying Fine Root Decomposition in Forests[J]. Chin Bull Bot, 2005, 22(02): 246 -254 .
[4] CHENG Long-Jun GUO De-Ping GE Hong-Juan. The Special Proteins in Sweet Potato Tuber—Sporamin[J]. Chin Bull Bot, 2001, 18(06): 672 -677 .
[5] Tang Yancheng. A Short Guide to the International Code of Botanical Nomenclature[J]. Chin Bull Bot, 1984, 2(06): 49 -54 .
[6] Chuanyuan Deng, Guiliang Xin, Wanchao Zhang, Suzhi Guo, Qiuhua Xue, Zhongxiong Lai, Luying Ye. SEM Observations and Measurements of Vestured Pits of the Secondary Xylem in the Tribe Rhizophoreae[J]. Chin Bull Bot, 2015, 50(1): 90 -99 .
[7] YANG Xiao-Lin, ZHANG Xi-Ming, LI Yi-Ling, LI Shao-Cai, SUN Hai-Long. ANALYSIS OF ROOT ARCHITECTURE AND ROOT ADAPTIVE STRATEGY IN THE TAKLIMAKAN DESERT AREA OF CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1268 -1276 .
[8] Zhang Jintun, Pickett S. T. A. Gradient Analysis of Forest Vegetation Along an Urban-Rural Transect in New York[J]. Chin J Plan Ecolo, 1998, 22(5): 392 -397 .
[9] JI Fang, MA Ying-Jie, FAN Zi-Li. Soil Water Regime in Populus euphratica Forest on the Tarim River Alluvial Plain[J]. Chin J Plan Ecolo, 2001, 25(1): 17 -21 .
[10] JIANG Fu-Wei, JIANG Hong, LI Wei, YU Shu-Quan, ZENG Bo, WANG Yan-Hong. PHOTOSYNTHETIC AND PHYSIOLOGICAL CHARACTERISTICS OF THREE ANGIOSPERMS OF DIFFERENT EVOLUTIONARY AGES UNDER ACID RAIN STRESS[J]. Chin J Plan Ecolo, 2009, 33(1): 125 -133 .