Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (9): 883-892.doi: 10.17521/cjpe.2016.0040

• Research Articles • Previous Articles     Next Articles

Leaf decomposition and nutrient release of dominant species in the forest and lake in the Jiuzhaigou National Nature Reserve, China

Bo XU1,2, Zhong-Fu ZHU3, Jin-Yang LI1, Yan WU1, Gui-Ping DENG3, Ning WU1, Fu-Sun SHI1,*()   

  1. 1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

    2Aba Teachers University, Aba, Sichuan 623002, China
    and
    3Jiuzhaigou National Nature Reserve Administration, Aba, Sichuan 623402, China
  • Received:2016-01-19 Accepted:2016-07-23 Online:2016-09-29 Published:2016-09-10
  • Contact: Fu-Sun SHI E-mail:shifs@cib.ac.cn

Abstract:

AimsLitter decomposition is an important ecological process in nutrient cycling and productivity of ecosystems. Our objective is to quantify the differences of litter decomposition and nutrient release (N and P) under the forest and in an alpine lake among the dominant tree species in the Jiuzhaigou National Nature Reserve.
Methods Fresh leaf litters of Abies ernestii, Pinus tabulaeformis, Betula albo-sinensis, and Salix cupularis were collected and placed in bags under the forest and in an alpine lake for a year.
Important findings The mass remaining ratio (MR) of the leaf litters was well predicted with Olson’s decay model (r > 0.93, p < 0.01). The time for 99% decomposition was the shortest for S. cupularis (6.80 a), followed by B. albo-sinensis (10.34 a), A. ernestii (18.88 a), and P. tabulaeformis (27.21 a). These values were 1.48-, 1.55-, 1.80-, and 1.65-folds of the corresponding values in the lake, respectively. Both MR and nitrogen remaining ratio (NR) had significantly negative correlations with the leaf initial N concentration, but significantly positive correlations with the initial C:N. The nutrient release was significantly different among the four species and between the two sites (i.e., forest and alpine lake). The N release of S. cupularis was consistent between forest and the lake (i.e. directly released in the beginning of decomposition), while other species had an obvious N enrichment process before it released. The release of P among was similar among the four species and between the two sites, with a release—enrichment—release pattern. Overall, the leaf litter decomposition appeared as an intricate process that was affected by the litter chemistry and and the environment. The fast litter decomposition in the lake may have a profound influence on the water quanlity in the Jiuzhaigou National Nature Reserve.

Key words: leaf litter, decomposition, initial nutrient content, nutrient release, alpine lake

Table 1

Site information"

样地 Site 位置 Location 经纬度 Longitude and latitude 海拔 Elevation (m)
黄果冷杉林 Abies ernestii forest 卧龙海 Wolong Lake 103.90° E, 33.20° N 2 266
柳树灌丛 Salix cupularis shrub 树正群海 Shuzheng lakes 103.90° E, 33.20° N 2 272
油松林 Pinus tabulaeformis forest 公主海 Gongzhu Lake 103.90° E, 33.20° N 2 314
红桦林 Betula albo-sinensis forest 诺日朗 Nuorilang 103.91° E, 33.16° N 2 398

Fig. 1

Changes in daily mean air and water temperatures from 2014-09-01 to 2015-09-25."

Table 2

Initial nutrient contents of the leaf litter (mean ± SE)"

树种 Species 碳含量
C content (mg·g-1)
氮含量
N content (mg·g-1)
磷含量
P content (mg·g-1)
C:N C:P N:P
红桦 Betula albo-sinensis 529.91 ± 10.04a 15.39 ± 0.32b 0.88 ± 0.03b 34.46 ± 1.37b 604.14 ± 34.61b 17.52 ± 0.31a
高山柳 Salix cupularis 505.12 ± 8.13b 16.69 ± 0.40a 1.39 ± 0.04a 30.26 ± 1.25b 363.17 ± 14.54c 12.01 ± 0.02c
黄果冷杉 Pinus tabulaeformis 489.32 ± 10.32b 15.45 ± 0.43b 1.44 ± 0.05a 31.70 ± 1.43b 339.60 ± 17.25c 10.71 ± 0.22d
油松 Abies ernestii 530.59 ± 11.60a 9.42 ± 0.33c 0.65 ± 0.03c 56.37 ± 2.76a 812.60 ± 58.05a 14.41 ± 0.66b

Table 3

Multivariate analysis of variance on the differences in mass and nutrient remaining ratios among species, decomposition time and site"

变异来源 Source of variation 自由度
Degree of
freedom
质量剩余率
Mass remaining ratio
氮素剩余率
Nitrogen remaining ratio
磷素剩余率
Phosphorus remaining ratio
F p F p F p
物种 Species 3 7 394.01 < 0.01 46.25 < 0.01 10.28 < 0.01
分解时间 Decomposition time 3 6 486.93 < 0.01 37.18 < 0.01 8.17 < 0.01
环境类型 Environmental types 1 7 169.46 < 0.01 0.91 0.34 51.04 < 0.01
物种×分解时间 Species × decomposition time 9 264.45 < 0.01 8.84 < 0.01 9.96 < 0.01
物种×环境类型 Species × environmental types 3 24.27 < 0.01 8.46 < 0.01 5.99 0.00
分解时间×环境类型 Decomposition time × environmental types 3 121.53 < 0.01 50.83 < 0.01 37.60 < 0.01

Fig. 2

Mass remaining ratio of leaf litter decomposition in the forest (A) and lake (B) (mean ± SE). The lowercase letters denote highly significant differences in mass remaining ratios among the species for the same decomposition time (p < 0.01), with each decomposition time holds the same multiple comparison results."

Table 4

Empirical model for leaf litter decomposition"

树种
Species
环境类型
Environmental
types
拟合方程
Fitted equations
分解系数k
Decomposition coefficient k
半分解时间
Time of half
decomposition (a)
99%分解时间
Time of 99%
decomposition (a)
相关系数r
Correlation
coefficient r
显著性
Significance
红桦
Betula albo-sinensis
陆地 Land y = 97.03e-0.441t 0.441 1.50 10.34 0.93 p < 0.01
水体 Water y = 95.01e-0.678t 0.678 0.95 6.69 0.96 p < 0.01
高山柳
Salix cupularis
陆地 Land y = 95.16e-0.667t 0.667 0.96 6.80 0.94 p < 0.01
水体 Water y = 91.76e-0.966t 0.966 0.63 4.66 0.95 p < 0.01
油松
Pinus tabulaeformis
陆地 Land y = 99.33e-0.169t 0.169 4.07 27.21 0.94 p < 0.01
水体 Water y = 94.12e-0.275t 0.275 2.30 16.47 0.96 p < 0.01
黄果冷杉
Abies ernestii
陆地 Land y = 98.42e-0.238t 0.238 2.84 18.88 0.97 p < 0.01
水体 Water y = 93.43e-0.432t 0.432 1.45 10.47 0.99 p < 0.01

Fig. 3

Dynamics of nutrient remaining ratios of the leaf litter decomposition in the forest (A and C) and lake (B and D) (mean ± SE)."

Table 5

Pearson correlations between mass, nitrogen and phosphorus remaining ratio after one-year decomposition and leaf initial nutrient contents"

C N P C:N C:P N:P
质量剩余率 Mass remaining ratio 0.12ns -0.63** -0.41* 0.57** 0.46* 0.47ns
氮素剩余率 Nitrogen remaining ratio 0.24ns -0.60** -0.45* 0.58** 0.50* 0.11ns
磷素剩余率 Phosphorus remaining ratio -0.06ns -0.14ns -0.02ns 0.14ns 0.04ns -0.14ns
1 Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449.
2 Aponte C, Garcia LV, Maranon T (2012). Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time.Ecosystems, 15, 1204-1218.
3 Ayres E, Dromph KM, Bardgett RD (2006). Do plant species encourage soil biota that specialise in the rapid decomposition of their litter?Soil Biology & Biochemistry, 38, 183-186.
4 Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils.Forest Ecology and Management, 133, 13-22.
5 Chen SX, Jiang MX (2006). Leaf litter decomposition dynamics of different tree species in Xiangxi River watershed, the Three Gorges Region, China.Acta Ecologica Sinica, 26, 2905-2912. (in Chinese with English abstract)[陈书秀, 江明喜 (2006). 三峡地区香溪河流域不同树种叶片凋落物的分解. 生态学报, 26, 2905-2912.]
6 Chi GL, Tong XL (2010). Leaching process of leaf litter in running water and lentic water in subtropical China.Ecological Science, 29, 50-55. (in Chinese with English abstract)[迟国梁, 童晓立 (2010). 亚热带地区树叶凋落物在流水和静水环境中的淋溶规律. 生态科学, 29, 50-55.]
7 Couteaux MM, Bottner P, Berg B (1995). Litter decomposition, climate and litter quality.Trends in Ecology Evolution, 10, 63-66.
8 Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle D, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071.
9 Deng CC, Jiang XM, Liu Y, Zhang J, Chen YM, He RL (2015). Litter decomposition of Rhododendron lapponicum in alpine timberline ecotone.Acta Ecologica Sinica, 35, 1769-1778. (in Chinese with English abstract)[邓长春, 蒋先敏, 刘洋, 张健, 陈亚梅, 和润莲 (2015). 高山林线交错带高山杜鹃的凋落物分解. 生态学报, 35, 1769-1778.]
10 Graca MAS (2001). The role of invertebrates on leaf litter decomposition in streams—A review.International Review of Hydrobiology, 86, 383-393.
11 Guo ZL, Zheng JP, Ma YD, Li QK, Yu GR, Han SJ, Fan CN, Liu WD (2006). Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China.Acta Ecologica Sinica, 26, 1037-1046. (in Chinese with English abstract)[郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德 (2006). 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 26, 1037-1046.]
12 Handa T, Aerts R, Berendse F, Berg MP, Bruder A, But- enschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014). Consequences of biodiversity loss for litter decomposition across biomes.Nature, 59, 218-221.
13 Hättenschwiler S, Jørgensen HB (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest.Journal of Ecology, 98, 754-763.
14 Hieber M, Gessner MO (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates.Ecology, 83, 1026.
15 Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden.Ecology, 87, 2288-2297.
16 Ibrahima A, Biyanzi P, Halima M (2008). Changes in organic compounds during leaf litter leaching: Laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon. Iforest-Biogeo- sciences and Forestry, 1, 27-33.
17 Kay AD, Mankowski J, Hobbie SE (2008). Long-term burning interacts with herbivory to slow decomposition.Ecology, 89, 1188-1194.
18 Leroy CJ, Marks JC (2006). Litter quality, stream character- istics and litter diversity influence decomposition rates and macroinvertebrates.Freshwater Biology, 51, 605-617.
19 Liu SY, Zhang XP, Zeng ZY (2007). Biodiversity of the Jiuzhaigou National Nature Reserve. Sichuan Science and Technology Press, Chengdu. (in Chinese)[刘少英, 章小平, 曾宗永 (2007). 九寨沟自然保护区的生物多样性. 四川科学科技出版社, 成都.]
20 Liu X, Jiang MX, Deng HB (2008). Dynamics of nitrogen and phosphorus content during leaf litter decomposition in Xiangxi River watershed, the Three Gorges region.Journal of Wuhan Botanical Research, 26, 613-619. (in Chinese with English abstract)[刘昕, 江明喜, 邓红兵 (2008). 三峡地区香溪河流域叶片凋落物分解过程中N、P含量动态研究. 武汉植物学研究, 26, 613-619.]
21 Lu RK (2000). Soil and Agro-chemical Analytical Methods. China Agricultural Science and Technology Press, Beijing. 302-315.[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 302-315.]
22 Makkonen M, Berg MP, Handa T, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient.Ecology Letters, 15, 1033-1041.
23 Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014). Temperature affects leaf litter decomposition in low-order forest streams: Field and microcosm approaches.FEMS Microbiology Ecology, 87, 257-267.
24 Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests.Ecosystems, 9, 46-62.
25 Moore TR, Trofymow JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999). Litter decomposition rates in Canadian forests.Global Change Biology, 5, 75-82.
26 Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems.Ecology, 44, 322-331.
27 Osono T, Azuma J, Hirose D (2014). Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils.Plant and Soil, 376, 411-421.
28 Parnas H (1975). Model for decomposition of organic material by microorganisms.Soil Biology & Biochemistry, 7, 161-169.
29 Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition.Science, 315, 361-364.
30 Pascoal C, Cassio F, Gomes P (2001). Leaf breakdown rates: A measure of water quality?International Review of Hydrobiology, 86, 407-416.
31 Peng SL, Liu Q (2002). The dynamics of forest litter and its responses to global warming.Acta Ecologica Sinica, 22, 1534-1544. (in Chinese with English abstract)[彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.]
32 Petersen RC, Cummins KW (1974). Leaf processing in a woodland stream.Freshwater Biology, 4, 343-368.
33 Purahong W, Kapturska D, Pecyna MJ, Schulz E, Schloter M, Buscot F, Hofrichter M, Kruger D (2014). Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study from central European forests.PLOS ONE, 9, 1-11.
34 Santiago LS (2007). Extending the leaf economics spectrum to decomposition: Evidence from a tropical forest.Ecology, 88, 126-1131.
35 SAS Institute (2008). SAS 9.2 User's Guide. Carolina, USA.
36 Shi L, Fan SH, Jiang ZH, Qi LH, Liu GL (2015). Mixed leaf litter decomposition and N, P release with a focus on Phy- llostachys edulis (Carriere) J. Houz. forest in subtropical southeastern China.Acta Societatis Botanicorum Poloniae, 84, 207-214.
37 Tiegs SD, Entrekin SA, Reeves GH, Kuntzsch D, Merritt RW (2013). Litter decomposition, and associated invertebrate communities, in wetland ponds of the Copper River Delta, Alaska (USA).Wetlands, 33, 1151-1163.
38 Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China.Acta Phytoecologica Sinica, 25, 375-380. (in Chinese with English abstract)[王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.]
39 Wang XE, Xue L, Xie TF (2009). A review on litter dec- omposition.Chinese Journal of Soil Science, 40, 1473-1478. (in Chinese with English abstract)[王相娥, 薛立, 谢腾芳 (2009). 凋落物分解研究综述. 土壤通报, 40, 1473-1478.]
40 Wang XH, Huang JJ, Yan ER (2004). Leaf litter decomposition of common trees in Tiantong.Acta Phytoecologica Sinica, 28, 457-467. (in Chinese with English abstract)[王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园常见植物凋落叶分解的研究. 植物生态学报, 28, 457-467.]
41 Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003). Determinants of litter mixing effects in a Swedish boreal forest.Soil Biology & Biochemistry, 35, 827-835.
42 Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhao YY, Zhu JX (2013). Effect of seasonal snow cover on litter decomposition in alpine forest.Chinese Journal of Plant Ecology, 37, 296-305. (in Chinese with English abstract)[武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解的影响. 植物生态学报, 37, 296-305.]
43 Yang YS, Lin P, Guo JF, Lin RY, Chen GS, He ZM, Xie JS (2003). Litter production, nutrient return and leaf-litter decomposition in natural and monoculture plantation forests of Castanopsis kawakamii in subtropical China.Acta Ecologica Sinica, 23, 1278-1289. (in Chinese with English abstract)[杨玉盛, 林鹏, 郭剑芬, 林瑞余, 陈光水, 何宗明, 谢锦升 (2003). 格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解. 生态学报, 23, 1278-1289.]
44 Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams.Chinese Journal of Applied Ecology, 26, 1601-1608. (in Chinese with English abstract)[张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.]
45 Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008). Factors influencing leaf litter decomposition: An intersite decomposition experiment across China.Plant and Soil, 311, 61-72.
[1] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[2] GU Wei-Ping, LIU Rui-Peng, LI Xing-Huan, SUN Tao, ZHANG Zi-Jia, ZAN Peng, WEN Lu-Ning, MA Peng-Yu, MAO Zi-Jun. Decomposition of different root branch orders and its dominant controlling factors in four temperate tree species [J]. Chin J Plan Ecolo, 2018, 42(9): 955-962.
[3] Wen-Jing CHEN, Lu GONG, Yu-Tong LIU. Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China [J]. Chin J Plan Ecolo, 2018, 42(4): 487-497.
[4] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[5] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[6] LU Ying, LI Kun, NI Rui-Qiang, LIANG Qiang, LI Chuan-Rong, ZHANG Cai-Hong. Effects of fine root decomposition on bacterial community structure of four dominated tree species in Mount Taishan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1200-1210.
[7] Li-Li YANG, Ji-Rui GONG, Min LIU, Bo YANG, Zi-He ZHANG, Qin-Pu LUO, Zhan-Wei ZHAI, Yan PAN. Advances in the effect of nitrogen deposition on grassland litter decomposition [J]. Chin J Plan Ecolo, 2017, 41(8): 894-913.
[8] Yu-Peng LU, Ji-Yuan XU, Xiao-Xi ZHANG, Bo-Ya WANG, Bo XIE, Zeng-Wen LIU. Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides [J]. Chin J Plan Ecolo, 2017, 41(6): 639-649.
[9] Li-Li YANG, Ji-Rui GONG, Yi-Hui WANG, Min LIU, Qin-Pu LUO, Sha XU, Yan PAN, Zhan-Wei ZHAI. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(8): 748-759.
[10] Qin WANG, Wan-Qin YANG, Fu-Zhong WU, Jian ZHANG, Bo TAN, Xi-Tao ZHANG. Characteristics of stump stock and decomposition in Pinus massoniana plantation [J]. Chin J Plan Ecolo, 2016, 40(5): 458-468.
[11] Shanshan Li,Zhengwen Wang,Junjie Yang. Changes in soil microbial communities during litter decomposition [J]. Biodiv Sci, 2016, 24(2): 195-204.
[12] Jing Yan,Guoliang Zhang,Ruihai Zhang,Zhen Song,Xiaohong Zhao,Yusheng Liu,Weidong Fu. The effect of Flaveria bidentis litter decomposition on the structure of arthropod communities [J]. Biodiv Sci, 2016, 24(11): 1288-1295.
[13] ZHANG Qi,YUAN Xiu-Liang,CHEN Xi,LUO Ge-Ping,LI Long-Hui. Vegetation change and its response to climate change in Central Asia from 1982 to 2012 [J]. Chin J Plan Ecolo, 2016, 40(1): 13-23.
[14] WAN Jing-Juan,GUO Jian-Fen,JI Shu-Rong,REN Wei-Ling,SI You-Tao,YANG Yu-Sheng. Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(7): 674-681.
[15] WANG Yi-Hui,GONG Ji-Rui,LIU Min,HUANG Yong-Mei,YAN Xin,ZHANG Zi-Yu,XU Sha,LUO Qin-Pu. Effects of grassland-use on soil respiration and litter decomposition [J]. Chin J Plan Ecolo, 2015, 39(3): 239-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jiaqiang SUN, Naoya HIROSE, Xingchun WANG, Pei WEN, Li XUE, Hitoshi SAKAKIBARA,Jianru ZUO. Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta[J]. J Integr Plant Biol, 2005, 47(5): 588 -603 .
[2] CHEN Shi-Ping, BAI Yong-Fei, HAN Xing-Guo, AN Ji-Lin, GUO Fu-Cun. VARIATIONS IN FOLIAR CARBON ISOTOPE COMPOSITION AND ADAPTIVE STRATEGIES OF CAREX KORSHINSKYI ALONG A SOIL MOISTURE GRADIENT[J]. Chin J Plan Ecolo, 2004, 28(4): 515 -522 .
[3] MO Zhu-Cheng, FAN Hang-Qing, HE Bin-Yuan. Effects of Seawater Salinity on Hypocotyl Growth in Two Mangrove Species[J]. Chin J Plan Ecolo, 2001, 25(2): 235 -239 .
[4] Juan Wang,Yaxin Zhai,Aiqin Zhang. Temporal variation of plant sexes in a wild population of Tulipa sinkiangensis over seven years[J]. Biodiv Sci, 2018, 26(5): 519 -526 .
[5] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[6] Ronggai Li, Yanmei Lu, Yueying Wang, Baoqiang Wang, Wei Song, Wenying Zhang. Molecular Study on Maize Rough Dwarf Disease: A Review[J]. Chin Bull Bot, 2017, 52(3): 375 -387 .
[7] Chen Zuo-zhong, Huang De-hua. Seasonal Variations of Nutritional Composition of 9 Range Plants in Stipa grandis Steppe[J]. Chin J Plan Ecolo, 1989, 13(4): 325 -331 .
[8] Li Ping-Tao, Wang Xue-Ming. A New Species of Gongronema (Asclepiadaceae) from Guizhou[J]. J Syst Evol, 1987, 25(6): 476 -477 .
[9] 12Xiao-Mei WEI; 1Xin-Fen GAO*; 13Li-Bing ZHANG*. A systematic study of Rosa sericea (Rosaceae) complex: Are R. omeiensis and R. sericea conspecific?[J]. J Syst Evol, 2008, 46(6): 919 -928 .
[10] Yi-Ben PENG, Cheng ZOU, Hua-Qin GONG, Shu-Nong BAI, Zhi-Hong XU and Yi-Qin LI. Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis sativus L.) During Sex Determination[J]. J Integr Plant Biol, 2005, 47(2): .